A179432 a(n) = C(2*3^(n-1), n).
1, 2, 15, 816, 316251, 873642672, 17743125256857, 2739097835911193328, 3301626910467952067341626, 31698997711344336177849363574320, 2460103385023594223069956382123378560008
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 15*x^2 + 816*x^3 + 316251*x^4 +... A(x) = 1 + 2*log(1+3*x)/3 + 2^2*log(1+3^2*x)^2/(3^2*2!) + 2^3*log(1+3^3*x)^3/(3^3*3!) + 2^4*log(1+3^4*x)^4/(3^4*4!) +...
Programs
-
Mathematica
Table[Binomial[2*3^(n-1),n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
PARI
{a(n)=binomial(2*3^(n-1), n)}
-
PARI
/* G.f. A(x) as Sum of Series: */ {a(n)=polcoeff(sum(k=0, n, (2/3)^k*log(1+3^k*x +x*O(x^n))^k/k!), n)}
Formula
G.f.: A(x) = Sum_{n>=0} (2/3)^n * log(1 + 3^n*x)^n / n!.
a(n) ~ 2^n * 3^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016
Comments