A179447
Smallest values d such that the equation d =x^5-y^2 has exactly n distinct nonnegative integer solutions.
Original entry on oeis.org
2, 1, 7, 1044976, 11331151
Offset: 0
A179448
Numbers d such that the equation d =x^5-y^2 has more than 2 distinct nonnegative integer solutions.
Original entry on oeis.org
1044976, 1541468, 11331151, 15579791, 16410368, 33543196, 46539324, 72697500, 302272796, 528292607
Offset: 1
a(1)=1044976 because 1044976=16^5-60^2 and 1044976=20^5-1468^2 and 1044976=41^5-10715^2;
a(3)=11331151 because 11331151=35^5-6418^2 and 11331151=40^5-9543^2 and 11331151=56^5-23225^2 and 11331151=386^5-2927305^2.
Cf.
A179107,
A179108,
A179109,
A179386,
A179387,
A179388,
A179406,
A179407,
A179408,
A179439,
A179447.
Showing 1-2 of 2 results.
Comments