A179455 Triangle read by rows: number of permutation trees of power n and height <= k + 1.
1, 1, 1, 2, 1, 5, 6, 1, 15, 23, 24, 1, 52, 106, 119, 120, 1, 203, 568, 700, 719, 720, 1, 877, 3459, 4748, 5013, 5039, 5040, 1, 4140, 23544, 36403, 39812, 40285, 40319, 40320, 1, 21147, 176850, 310851, 354391, 362057, 362836, 362879, 362880
Offset: 0
Examples
As a (0,0)-based triangle with an additional column [1,0,0,0,...] at the left hand side: 1; 0, 1; 0, 1, 2; 0, 1, 5, 6; 0, 1, 15, 23, 24; 0, 1, 52, 106, 119, 120; 0, 1, 203, 568, 700, 719, 720; 0, 1, 877, 3459, 4748, 5013, 5039, 5040; 0, 1, 4140, 23544, 36403, 39812, 40285, 40319, 40320; 0, 1, 21147, 176850, 310851, 354391, 362057, 362836, 362879, 362880;
Links
- Alois P. Heinz, Rows n = 0..141, flattened
- Swapnil Garg, Alan Peng, Classical and consecutive pattern avoidance in rooted forests, arXiv:2005.08889 [math.CO], May 2020.
- Peter Luschny, Permutation Trees.
Programs
-
Mathematica
b[n_, t_, h_] := b[n, t, h] = If[n == 0 || h == 0, 1, Sum[Binomial[n - 1, j - 1]*b[j - 1, 0, h - 1]*b[n - j, t, h], {j, 1, n}]]; T[0, 0] = 1; T[n_, k_] := b[n, 1, k]; Table[T[n, k], {n, 0, 9}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-François Alcover, Jul 10 2019, after Alois P. Heinz in A179454 *)
-
Sage
# Generating algorithm from Joerg Arndt. def A179455row(n): def generate(n, k): if n == 0 or k == 0: return 0 for j in range(n-1, 0, -1): f = a[j] + 1 while f <= j: a[j] = f1 = fl = f for i in range(k): fl = f1 f1 = a[fl] if f1 == fl: return j f += 1 a[j] = 0 return 0 count = [1 for j in range(n)] if n > 0 else [1] for k in range(n): a = [0 for j in range(n)] while generate(n, k) != 0: count[k] += 1 return count for n in range(9): A179455row(n) # Peter Luschny, Jan 08 2013
-
Sage
# uses[bell_transform from A264428] # Adds the column (1,0,0,0,..) to the left hand side and starts at n=0. def A179455_matrix(dim): b = [1]+[0]*(dim-1); L = [b] for k in range(dim): b = [sum(bell_transform(n, b)) for n in range(dim)] L.append(b) return matrix(ZZ, dim, lambda n, k: L[k][n] if k<=n else 0) print(A179455_matrix(10)) # Peter Luschny, Dec 06 2015
Comments