cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179455 Triangle read by rows: number of permutation trees of power n and height <= k + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 5, 6, 1, 15, 23, 24, 1, 52, 106, 119, 120, 1, 203, 568, 700, 719, 720, 1, 877, 3459, 4748, 5013, 5039, 5040, 1, 4140, 23544, 36403, 39812, 40285, 40319, 40320, 1, 21147, 176850, 310851, 354391, 362057, 362836, 362879, 362880
Offset: 0

Views

Author

Peter Luschny, Aug 11 2010

Keywords

Comments

Partial row sums of A179454. Special cases: A179455(n,1) = BellNumber(n) = A000110(n) for n > 1; A179455(n,n-1) = n! for n > 1 and A179455(n,n-2) = A033312(n) for n > 1. Column 3 is A187761(n) for n >= 3.
See the interpretation of Joerg Arndt in A187761: Maps such that f^[k](x) = f^[k-1](x) correspond to column k of A179455 (for n >= k). - Peter Luschny, Jan 08 2013

Examples

			As a (0,0)-based triangle with an additional column [1,0,0,0,...] at the left hand side:
1;
0, 1;
0, 1, 2;
0, 1, 5, 6;
0, 1, 15, 23, 24;
0, 1, 52, 106, 119, 120;
0, 1, 203, 568, 700, 719, 720;
0, 1, 877, 3459, 4748, 5013, 5039, 5040;
0, 1, 4140, 23544, 36403, 39812, 40285, 40319, 40320;
0, 1, 21147, 176850, 310851, 354391, 362057, 362836, 362879, 362880;
		

Crossrefs

Row sums are A264151.

Programs

  • Mathematica
    b[n_, t_, h_] := b[n, t, h] = If[n == 0 || h == 0, 1, Sum[Binomial[n - 1, j - 1]*b[j - 1, 0, h - 1]*b[n - j, t, h], {j, 1, n}]];
    T[0, 0] = 1; T[n_, k_] := b[n, 1, k];
    Table[T[n, k], {n, 0, 9}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-François Alcover, Jul 10 2019, after Alois P. Heinz in A179454 *)
  • Sage
    # Generating algorithm from Joerg Arndt.
    def A179455row(n):
        def generate(n, k):
            if n == 0 or k == 0: return 0
            for j in range(n-1, 0, -1):
                f = a[j] + 1
                while f <= j:
                    a[j] = f1 = fl = f
                    for i in range(k):
                        fl = f1
                        f1 = a[fl]
                    if f1 == fl: return j
                    f += 1
                a[j] = 0
            return 0
        count = [1 for j in range(n)] if n > 0 else [1]
        for k in range(n):
            a = [0 for j in range(n)]
            while generate(n, k) != 0:
                count[k] += 1
        return count
    for n in range(9): A179455row(n) # Peter Luschny, Jan 08 2013
    
  • Sage
    # uses[bell_transform from A264428]
    # Adds the column (1,0,0,0,..) to the left hand side and starts at n=0.
    def A179455_matrix(dim):
        b = [1]+[0]*(dim-1); L = [b]
        for k in range(dim):
            b = [sum(bell_transform(n, b)) for n in range(dim)]
            L.append(b)
        return matrix(ZZ, dim, lambda n, k: L[k][n] if k<=n else 0)
    print(A179455_matrix(10)) # Peter Luschny, Dec 06 2015