cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179499 E.g.f. A(x) = G(x)^2/x where G(x) satisfies: G(G(x))^2 = G(x)^2 * G'(x) and G(x) is the g.f. of A179499.

Original entry on oeis.org

1, 4, 42, 768, 20680, 749040, 34497792, 1944626432, 130528288512, 10219233265920, 918320724657600, 93509880099305472, 10677268138244018688, 1355273477576934150144, 189834913883100796531200
Offset: 1

Views

Author

Paul D. Hanna, Jul 31 2010

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 42*x^3/3! + 768*x^4/4! + 20680*x^5/5! +...
		

Crossrefs

A179498 E.g.f. satisfies: A(x) = A(x*A(x))^2 - x*A'(x).

Original entry on oeis.org

1, 1, 6, 78, 1648, 49500, 1957968, 97097336, 5834581632, 414370221696, 34127635732800, 3211425586911168, 341164552018811904, 40517022329819203584, 5335290940894955228160, 773591071307555130451200
Offset: 0

Views

Author

Paul D. Hanna, Jul 31 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 78*x^3/3! + 1648*x^4/4! + 49500*x^5/5! +...
Related expansions:
. x*A(x) = x + 2*x^2/2! + 18*x^3/3! + 312*x^4/4! + 8240*x^5/5! +...
. x*A(x)^2 = x + 4*x^2/2! + 42*x^3/3! + 768*x^4/4! + 20680*x^5/5! +..
. x*A'(x) = x + 12*x^2/2! + 234*x^3/3! + 6592*x^4/4! + 247500*x^5/5! +...
. A(x*A(x)) = 1 + x + 8*x^2/2! + 132*x^3/3! + 3400*x^4/4! + 120940*x^5/5! +...
. A(x*A(x))^2 = 1 + 2*x + 18*x^2/2! + 312*x^3/3! + 8240*x^4/4! + 297000*x^5/5! +...
Illustrate the iterations G_n(x) of G(x) = x*A(x) by:
. [G_3(x)/x]^2 = A(x)^2 * G_2'(x);
. [G_4(x)/x]^2 = A(x)^2 * G_3'(x);
. [G_5(x)/x]^2 = A(x)^2 * G_4'(x); ...
which can be shown by the chain rule of differentiation.
...
The RIORDAN ARRAY (A(x), x*A(x)) begins:
. 1;
. 1, 1;
. 6/2!, 2, 1;
. 78/3!, 14/2!, 3, 1;
. 1648/4!, 192/3!, 24/2!, 4, 1;
. 49500/5!, 4136/4!, 348/3!, 36/2!, 5, 1;
. 1957968/6!, 124840/5!, 7680/4!, 552/3!, 50/2!, 6, 1;
. 97097336/7!, 4928256/6!, 233940/5!, 12520/4!, 810/3!, 66/2!, 7, 1; ...
where the g.f. of column k = A(x)^(k+1) for k>=0. ...
The MATRIX LOG of the above Riordan array (A(x), x*A(x)) begins:
. 0;
. 1, 0;
. 4/2!, 2, 0;
. 42/3!, 8/2!, 3, 0;
. 768/4!, 84/3!, 12/2!, 4, 0;
. 20680/5!, 1536/4!, 126/3!, 16/2!, 5, 0;
. 749040/6!, 41360/5!, 2304/4!, 168/3!, 20/2!, 6, 0;
. 34497792/7!, 1498080/6!, 62040/5!, 3072/4!, 210/3!, 24/2!, 7, 0; ...
where the g.f. of column k = (k+1)*x*A(x)^2 for k>=0.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+sum(m=2,n-1,a(m)*x^m/m!)+x*O(x^(n+5)));if(n<2,n!*polcoeff(A,n),n!*polcoeff(subst(A,x,x*A)^2,n)/(n-1))}

Formula

E.g.f. satisfies: x*A(x)^2 equals the g.f. of column 0 in the matrix log of the Riordan array (A(x), x*A(x)).
E.g.f.: A(x) = G(x)/x where G(x) = e.g.f. of A179497.
Let G_n(x) denote the n-th iteration of x*A(x) with G_0(x)=x, then
. [G_{n+1}(x)/x]^2 = A(x)^2*G_n'(x) for all n,
and L=x*A(x)^2 satisfies the series:
. A(x) = 1 + L + L*Dx(L)/2! + L*Dx(L*Dx(L))/3! + L*Dx(L*Dx(L*Dx(L)))/4! +...
. G_{-1}(x)/x = 1 - L + L*Dx(L)/2! - L*Dx(L*Dx(L))/3! + L*Dx(L*Dx(L*Dx(L)))/4! -+...
. G_n(x)/x = 1 + n*L + n^2*L*Dx(L)/2! + n^3*L*Dx(L*Dx(L))/3! + n^4*L*Dx(L*Dx(L*Dx(L)))/4! +...
where Dx(F) = d/dx(x*F).

A179936 E.g.f. satisfies: A(A(x))^3 = A(x)^3 * A'(x).

Original entry on oeis.org

1, 0, 6, 0, 540, 0, 156240, 0, 96480720, 0, 104661849600, 0, 177947471782080, 0, 439942718370355200, 0, 1499983925770422892800, 0, 6780179728814814933811200, 0, 39412342523061395825857920000, 0
Offset: 1

Views

Author

Paul D. Hanna, Aug 02 2010

Keywords

Examples

			E.g.f: A(x) = x + 6*x^3/3! + 540*x^5/5! + 156240*x^7/7! + 96480720*x^9/9! + 104661849600*x^11/11! + 177947471782080*x^13/13! + 439942718370355200*x^15/15! +...
Related expansions:
A(x)^3 = 6*x^3/3! + 360*x^5/5! + 83160*x^7/7! + 43908480*x^9/9! +...
A(A(x)) = x + 12*x^3/3! + 1440*x^5/5! + 509040*x^7/7! + 368686080*x^9/9! +...
A(A(x))^3 = 6*x^3/3! + 720*x^5/5! + 241920*x^7/7! + 165110400*x^9/9! +...
A'(x) = 1 + 6*x^2/2! + 540*x^4/4! + 156240*x^6/6! + 96480720*x^8/8! +...
		

Crossrefs

Cf. A179497 (variant).

Programs

  • PARI
    /* Coefficients of A_m(x) = m-th iteration of A(x): */
    {a(n,m=1)=local(A=x+x^3,D);for(i=1,n,D=x;A=x+sum(k=1,n,m^k*(D=(A+x*O(x^n))^3*deriv(D))/k!));if(n<1,0,n!*polcoeff(A,n))}

Formula

Let A_n(x) denote the n-th iteration of A(x), then
. [A_{n+1}(x)]^3 = A(x)^3 * A_n'(x) for all n,
and A = A(x) satisfies:
. A = x + A^3 + A^3*D(A^3)/2! + A^3*D(A^3*D(A^3))/3! + A^3*D(A^3*D(A^3*D(A^3)))/4! + ...;
. A_n(x) = x + n*A^3 + n^2*A^3*D(A^3)/2! + n^3*A^3*D(A^3*D(A^3))/3! + n^4*A^3*D(A^3*D(A^3*D(A^3)))/4! + ...
where operator D(F) = d/dx F.
Showing 1-3 of 3 results.