A179502 Numbers k with the property that k^2, k^2+1 and k^2+2 are all semiprimes.
11, 29, 79, 271, 379, 461, 521, 631, 739, 881, 929, 1459, 1531, 1709, 2161, 2239, 2341, 2729, 3049, 3491, 3709, 4021, 4349, 4561, 4691, 5021, 5281, 5851, 5879, 6301, 6329, 6829, 7559, 8009, 9151, 10069, 10099, 10151, 10529, 10891, 11719, 11959, 11969, 13799, 14051, 14159
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..6680
Crossrefs
Programs
-
Mathematica
fQ[n_] := PrimeQ[(n^2 + 1)/2] && PrimeQ[(n^2 + 2)/3]; Select[ Prime@ Range@ 1667, fQ] (* Robert G. Wilson v, Feb 26 2011 *) Select[Range[15000],PrimeOmega[#^2+{0,1,2}]=={2,2,2}&] (* Harvey P. Dale, May 12 2025 *)
-
PARI
{n=10;for(i=1,10^4,n=nextprime(n+1);n2=n^2;if(2==bigomega(n2+1)&&2==bigomega(n2+2),print1(n,",")))}
Comments