cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A179545 The sum of the elements within a jump in a Sieve of Eratosthenes table.

Original entry on oeis.org

3, 9, 30, 63, 165, 234, 408, 513, 759, 1218, 1395, 1998, 2460, 2709, 3243, 4134, 5133, 5490, 6633, 7455, 7884, 9243, 10209, 11748, 13968, 15150, 15759, 17013, 17658, 18984, 24003, 25545, 27948, 28773, 33078, 33975, 36738, 39609, 41583, 44634
Offset: 1

Views

Author

Odimar Fabeny, Jul 19 2010

Keywords

Comments

Every term in this sequence is a multiple of 3. - Nathaniel Johnston, May 04 2011

Examples

			2 (3) = 3 (jumps 3), 3 (4,5) = 9 (jumps 4 and 5), 5 (6,7,8,9) = 30 (jumps 6 through 9), 7 (8,... 13) = 63 (jumps 8 through 13), and so on.
		

Programs

Formula

From Carl R. White, Jul 27 2010: (Start)
a(n) = sum(A000040(n)+1 .. 2*A000040(n)-1) = 3*A000040(n)*(A000040(n)-1)/2.
a(n) = sum(p+1 .. 2p-1) = 3p(p-1)/2 where p is the n-th prime. (End)
a(n) = A179628(n)+A108313(n+1). - R. J. Mathar, Oct 03 2010

Extensions

More terms from Carl R. White and Odimar Fabeny, Jul 27 2010

A179654 Sum of the numbers already removed (including the target number) in the first jump of a Sieve of Eratosthenes table.

Original entry on oeis.org

4, 10, 33, 53, 138, 201, 340, 431, 624, 1024, 1116, 1557, 1989, 2202, 2702, 3357, 4098, 4520, 5484, 6109, 6615, 7608, 8502, 9802, 11391, 12286, 13002, 14160, 14918, 16142, 19896, 21320, 23069, 23760, 27377, 28429, 30430, 33159, 34977, 37876, 40177
Offset: 0

Views

Author

Odimar Fabeny, Jul 22 2010

Keywords

Comments

2(4) = 4, 3(6) = 10(4,6), 5(10) = 33(6,8,9,10), 7(14) = 53(8,9,10,12,14), 11(22) = 138(12,14,15,16,18,20,21,22).

Crossrefs

Cf. A000040 and A179628.

Programs

  • Mathematica
    fQ[n_, p_] := Block[{q = First /@ FactorInteger@n}, Union[p >= # & /@ q] == {True}]; f[n_] := Block[{p = Prime@n}, Plus @@ Select[ Range[p + 1, 2 p], fQ[ #, p] &]]; Array[f, 41] (* Robert G. Wilson v, Aug 23 2010 *)

Extensions

a(6)-a(41) from Robert G. Wilson v, Aug 23 2010
Showing 1-2 of 2 results.