cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A179802 Digital root of A179545.

Original entry on oeis.org

3, 9, 3, 9, 3, 9, 3, 9, 3, 3, 9, 9, 3, 9, 3, 3, 3, 9, 9, 3, 9, 9, 3, 3, 9, 3, 9, 3, 9, 3, 9, 3, 3, 9, 3, 9, 9, 9, 3, 3, 3, 9, 3, 9, 3, 9, 9, 9, 3, 9, 3, 3, 9, 3, 3, 3, 3, 9, 9, 3, 9, 3, 9, 3, 9, 3, 9, 9, 3, 9, 3, 3, 9, 9, 9, 3, 3, 9, 3, 9, 3, 9, 3, 9, 9, 3, 3
Offset: 1

Views

Author

Odimar Fabeny, Jul 27 2010

Keywords

Comments

Because every term in A179545 is a multiple of 3, each term of this sequence is 3 or 9. - Nathaniel Johnston, May 04 2011
a(n) = 3 if and only if prime(n) == 2 (mod 3); otherwise a(n) = 9. - Charles R Greathouse IV, May 19 2011

Crossrefs

Programs

  • Maple
    read("transforms") ; A010888 :=proc(n) local a; a := digsum(n) ; if a > 9 then return procname(a) ; else return a; end if; end proc:
    A179545 := proc(n) local p; p := ithprime(n); 3*p*(p-1)/2 ; end proc:
    A179802 := proc(n) A010888(A179545(n)) ; end proc:
    seq(A179802(n),n=1..180) ; # R. J. Mathar, Oct 03 2010
  • PARI
    apply(p->if(p%3==2,3,9),primes(10000)) \\ Charles R Greathouse IV, May 19 2011

Formula

a(n) = A010888(A179545(n)). - Michel Marcus, Mar 08 2022

Extensions

More terms from R. J. Mathar, Oct 03 2010

A001748 a(n) = 3 * prime(n).

Original entry on oeis.org

6, 9, 15, 21, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 753
Offset: 1

Views

Author

Keywords

Comments

Semiprimes divisible by 3. - Jianing Song, Oct 02 2022

Crossrefs

Programs

Formula

A164023(a(n)) = A164024(a(n)) = A000040(n). - Reinhard Zumkeller, Aug 09 2009
a(n) = 3*A000040(n). - Omar E. Pol, Jan 31 2012
A253046(a(n)) < a(n). - Reinhard Zumkeller, Dec 26 2014

A179896 Sum of the numbers between k := n-th nonprime and 2k (like a jump in a Sieve of Eratosthenes).

Original entry on oeis.org

0, 18, 45, 84, 108, 135, 198, 273, 315, 360, 459, 570, 630, 693, 828, 900, 975, 1053, 1134, 1305, 1488, 1584, 1683, 1785, 1890, 2109, 2223, 2340, 2583, 2838, 2970, 3105, 3384, 3528, 3675, 3825, 3978, 4293, 4455, 4620, 4788, 4959, 5310, 5673, 5859, 6048, 6240, 6435
Offset: 1

Views

Author

Odimar Fabeny, Jul 31 2010

Keywords

Comments

The values 4, 7, 10... (A016777 for n>1) are the values of floor( a(k)/ A018252(k) ) where k runs through the indices where A179879(k) mod A018252(k) != 0. - Odimar Fabeny.
Proof: a(k)/A018252(k) is 3*(A081252(k)-1)/2. This is a non-integer iff A018252(k) is even. Since the n-th even nonprime is 2*n+2, floor(3*(2*n+1)/2) = 3*n+1=a(n). - Robert Israel, Aug 27 2014

Examples

			0(0) = 0, 1(2) = 0, 4(8) = 5,6,7 = 18, 6(12) = 7,8,9,10,11 = 45 and so on.
		

Crossrefs

Programs

  • Maple
    ithnonprime := proc(n)local k: option remember: if(n=1)then return 1: else k := procname(n-1)+1: while true do if(not isprime(k))then return k fi: k:=k+1: od: fi: end:
    A179896 := proc(n)local k: k:=ithnonprime(n): return 3*k*(k-1)/2: end:
    seq(A179896(n),n=1..40); # Nathaniel Johnston, Apr 21 2011
  • Mathematica
    f[n_] := Plus @@ Range[n + 1, 2 n - 1]; f /@ Select[ Range@ 64, ! PrimeQ@# &] (* Robert G. Wilson v, Sep 02 2010 *)

Formula

a(n) = A045943(A141468(n+1)-1). - R. J. Mathar, Sep 01 2010

Extensions

More terms from Odimar Fabeny, Aug 11 2010
Offset adapted to A141468 and to match another 0 - R. J. Mathar, Sep 01 2010

A273221 a(n) = p*(p - 1)*(13*p - 5)/6, where p = prime(n).

Original entry on oeis.org

7, 34, 200, 602, 2530, 4264, 9792, 13794, 24794, 50344, 61690, 105672, 144320, 166754, 218362, 314184, 434594, 480680, 638242, 760410, 826944, 1049594, 1218274, 1503744, 1949312, 2201800, 2335834, 2620002, 2770344, 3088064, 4389882, 4819490, 5515072
Offset: 1

Views

Author

Vincenzo Librandi, May 18 2016

Keywords

Crossrefs

Programs

  • Magma
    [p*(p-1)*(13*p-5)/6: p in PrimesUpTo(200)];
    
  • Mathematica
    Table[p = Prime[n]; p (p - 1) (13 p - 5) / 6, {n, 40}]
    #(#-1) (13#-5)/6&/@Prime[Range[40]] (* Harvey P. Dale, Aug 04 2021 *)
  • Ruby
    require 'prime'
    p Prime.each.take(n).map{|i| i * (i - 1) * (13 * i - 5) / 6} # Seiichi Manyama, May 25 2016

A273222 a(n) = p*(p - 1)*(73*p^2 - 45*p + 14)/24, where p = prime(n).

Original entry on oeis.org

18, 134, 1345, 5733, 38280, 76479, 230588, 363546, 792649, 2033451, 2664915, 5454873, 8260270, 10012464, 14337303, 23275109, 35855716, 41007555, 59825238, 75546485, 84478374, 116064351, 141557994, 187394306, 264812328, 311476425, 336995709, 392705408, 423017991
Offset: 1

Views

Author

Vincenzo Librandi, May 19 2016

Keywords

Crossrefs

Programs

  • Magma
    [p*(p-1)*(73*p^2-45*p+14)/24: p in PrimesUpTo(200)];
  • Mathematica
    Table[p = Prime[n]; p (p - 1) (73 p^2 - 45 p + 14) / 24, {n, 40}]
    (#(#-1)(73#^2-45#+14))/24&/@Prime[Range[30]] (* Harvey P. Dale, Jan 17 2017 *)

A179893 a(n) = 3/2 * (prime(n)-1).

Original entry on oeis.org

3, 6, 9, 15, 18, 24, 27, 33, 42, 45, 54, 60, 63, 69, 78, 87, 90, 99, 105, 108, 117, 123, 132, 144, 150, 153, 159, 162, 168, 189, 195, 204, 207, 222, 225, 234, 243, 249, 258, 267, 270, 285, 288, 294, 297, 315, 333, 339, 342, 348, 357, 360, 375, 384, 393, 402, 405
Offset: 2

Views

Author

Odimar Fabeny, Jul 30 2010, Aug 02 2010

Keywords

Examples

			For n=4, the fourth prime is 7, so a(4) = (3/2) * (7 - 1) = 9. Note that since the sequence starts at n=2, prime(n) is odd, so a(n) is an integer. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Programs

Formula

A179545 / prime(n).
a(n) = 3*A005097(n-1). - R. J. Mathar, Aug 15 2010

Extensions

More terms from R. J. Mathar, Aug 15 2010

A179899 Integers of the form A179896(n)/A141468(n+1).

Original entry on oeis.org

0, 12, 21, 30, 36, 39, 48, 51, 57, 66, 72, 75, 81, 84, 93, 96, 102, 111, 114, 120, 126, 129, 135, 138, 141, 147, 156, 165, 171, 174, 177, 180, 183, 186, 192, 198, 201, 210, 213, 216, 219, 228, 231, 237, 240, 246, 252, 255, 261, 264, 273, 276, 279, 282, 291
Offset: 1

Views

Author

Odimar Fabeny, Jul 31 2010

Keywords

Examples

			0 = 0/1, 12 = 108/9, 21 = 315/15, 30 = 630/21, 36 = 900/25 and so on.
		

Crossrefs

Programs

  • Maple
    ithnonprime := proc(n)local k: option remember: if(n=1)then return 1: else k := procname(n-1)+1: while true do if(not isprime(k))then return k fi: k:=k+1: od: fi: end: A179899ind := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(ithnonprime(k) mod 2 <> 0)then return k: fi: od: end: A179899 := proc(n) return 3*(ithnonprime(A179899ind(n))-1)/2: end: seq(A179899(n),n=1..55); # Nathaniel Johnston, May 05 2011

Extensions

More terms from Odimar Fabeny, Aug 12 2010
Definition rephrased by R. J. Mathar, Sep 01 2010

A273223 a(n) = p*(p - 1)*(501*p^3 - 414*p^2 + 111*p - 54)/120, where p = prime(n).

Original entry on oeis.org

42, 504, 8796, 53298, 566412, 1341756, 5312160, 9373536, 24790458, 80346588, 112613886, 275440284, 462452448, 588037212, 920759046, 1686448764, 2893307844, 3421602972, 5484429720, 7340452434, 8440231968, 12551864598, 16086117120, 22838112000, 35181089856
Offset: 1

Views

Author

Vincenzo Librandi, May 19 2016

Keywords

Crossrefs

Programs

  • Magma
    [p*(p-1)*(501*p^3-414*p^2+111*p-54)/120: p in PrimesUpTo(200)];
  • Mathematica
    Table[p = Prime[n]; p (p - 1) (501 p^3 - 414 p^2 + 111 p - 54) / 120, {n, 40}]

A179789 Sum of the differences between the first prime and the next, inside in the first jump in a Sieve of Eratosthenes table.

Original entry on oeis.org

1, 2, 2, 10, 16, 20, 34, 44, 66, 78, 124, 182, 184, 206, 212, 300, 386, 360, 412, 494, 466, 608, 628, 700, 928, 1046, 1006, 1034, 996, 1034, 1440, 1474, 1728, 1816, 1976, 1922, 2226, 2212, 2264, 2260, 2604, 2722, 2968, 3094, 3158, 3292, 3714, 4148, 4218, 4370
Offset: 0

Views

Author

Odimar Fabeny, Jul 27 2010

Keywords

Comments

2 - 3 = 1, 3 - 5 = 2, 5 - 7 = 2, 7 - 11 = 4 + 7 - 13 = 6 ==> 4 + 6 = 10, 11 - 13 = 2 + 11 - 17 = 6 + 11 - 19 = 8 ==> 2 + 6 + 8 = 16.

Crossrefs

Programs

  • Maple
    A179789 := proc(n) a :=0 ; for q from ithprime(n)+1 to 2*ithprime(n) do if isprime(q) then a := a+q-ithprime(n) ; end if; end do: a ; end proc: seq(A179789(n),n=1..50) ; # R. J. Mathar, Sep 19 2010

Extensions

Extended by R. J. Mathar, Sep 19 2010

A273224 a(n) = p*(p - 1)*(4051*p^4 - 4130*p^3 + 1445*p^2 - 190*p + 264)/720, where p = prime(n).

Original entry on oeis.org

104, 1911, 56974, 488810, 8247965, 23154950, 120309952, 237557475, 761914054, 3119071046, 4675225940, 13662251406, 25431242200, 33922355957, 58079673968, 120014329006, 229294119649, 280383632390, 493768590887, 700437412570, 828128942424, 1333041982376
Offset: 1

Views

Author

Vincenzo Librandi, May 19 2016

Keywords

Crossrefs

Programs

  • Magma
    [p*(p-1)*(4051*p^4-4130*p^3+1445*p^2-190*p+264)/720: p in PrimesUpTo(200)];
  • Mathematica
    Table[p = Prime[n]; p (p - 1) (4051 p^4 - 4130 p^3 + 1445 p^2 - 190 p + 264) / 720, {n, 40}]
    #(#-1) (4051#^4-4130#^3+1445#^2-190#+264)/720&/@Prime[Range[30]] (* Harvey P. Dale, Aug 05 2018 *)
Showing 1-10 of 11 results. Next