cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A273222 a(n) = p*(p - 1)*(73*p^2 - 45*p + 14)/24, where p = prime(n).

Original entry on oeis.org

18, 134, 1345, 5733, 38280, 76479, 230588, 363546, 792649, 2033451, 2664915, 5454873, 8260270, 10012464, 14337303, 23275109, 35855716, 41007555, 59825238, 75546485, 84478374, 116064351, 141557994, 187394306, 264812328, 311476425, 336995709, 392705408, 423017991
Offset: 1

Views

Author

Vincenzo Librandi, May 19 2016

Keywords

Crossrefs

Programs

  • Magma
    [p*(p-1)*(73*p^2-45*p+14)/24: p in PrimesUpTo(200)];
  • Mathematica
    Table[p = Prime[n]; p (p - 1) (73 p^2 - 45 p + 14) / 24, {n, 40}]
    (#(#-1)(73#^2-45#+14))/24&/@Prime[Range[30]] (* Harvey P. Dale, Jan 17 2017 *)

A273223 a(n) = p*(p - 1)*(501*p^3 - 414*p^2 + 111*p - 54)/120, where p = prime(n).

Original entry on oeis.org

42, 504, 8796, 53298, 566412, 1341756, 5312160, 9373536, 24790458, 80346588, 112613886, 275440284, 462452448, 588037212, 920759046, 1686448764, 2893307844, 3421602972, 5484429720, 7340452434, 8440231968, 12551864598, 16086117120, 22838112000, 35181089856
Offset: 1

Views

Author

Vincenzo Librandi, May 19 2016

Keywords

Crossrefs

Programs

  • Magma
    [p*(p-1)*(501*p^3-414*p^2+111*p-54)/120: p in PrimesUpTo(200)];
  • Mathematica
    Table[p = Prime[n]; p (p - 1) (501 p^3 - 414 p^2 + 111 p - 54) / 120, {n, 40}]

A273224 a(n) = p*(p - 1)*(4051*p^4 - 4130*p^3 + 1445*p^2 - 190*p + 264)/720, where p = prime(n).

Original entry on oeis.org

104, 1911, 56974, 488810, 8247965, 23154950, 120309952, 237557475, 761914054, 3119071046, 4675225940, 13662251406, 25431242200, 33922355957, 58079673968, 120014329006, 229294119649, 280383632390, 493768590887, 700437412570, 828128942424, 1333041982376
Offset: 1

Views

Author

Vincenzo Librandi, May 19 2016

Keywords

Crossrefs

Programs

  • Magma
    [p*(p-1)*(4051*p^4-4130*p^3+1445*p^2-190*p+264)/720: p in PrimesUpTo(200)];
  • Mathematica
    Table[p = Prime[n]; p (p - 1) (4051 p^4 - 4130 p^3 + 1445 p^2 - 190 p + 264) / 720, {n, 40}]
    #(#-1) (4051#^4-4130#^3+1445#^2-190#+264)/720&/@Prime[Range[30]] (* Harvey P. Dale, Aug 05 2018 *)
Showing 1-3 of 3 results.