A078497 The member r of a triple of primes (p,q,r) in arithmetic progression which sum to 3*prime(n) = A001748(n) = p + q + r.
7, 11, 17, 19, 23, 31, 29, 41, 43, 43, 53, 67, 53, 59, 71, 79, 73, 83, 79, 97, 107, 107, 127, 113, 109, 113, 139, 137, 151, 149, 167, 151, 167, 163, 163, 199, 197, 179, 191, 199, 233, 223, 227, 241, 223, 283, 257, 277, 239, 251, 271, 263, 263, 269, 281, 313
Offset: 3
Keywords
Examples
a(1) = 7 because 3+5+7 = 15; a(2) = 11 because 3+7+11 = 21; a(3) = 17 because 5+11+17= 33.
Programs
-
Maple
A078497 := proc(n) local p3, i,d,r,p; p3 := ithprime(n) ; i := n+1 ; while true do r := ithprime(i) ; d := r-p3 ; p := p3-d ; if isprime(p) then RETURN(r) ; fi ; i := i+1 ; od ; RETURN(-1) ; end: for n from 3 to 60 do printf("%d, ",A078497(n)) ; od ; # R. J. Mathar, May 19 2007
-
Mathematica
f[n_] := Block[{p = Prime[n], k}, k = p + 1; While[ !PrimeQ[k] || !PrimeQ[2p - k], k++ ]; k]; Table[ f[n], {n, 3, 60}]
Extensions
Edited and extended by Robert G. Wilson v, Nov 29 2002
Further edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Comments