A056240
Smallest number whose prime divisors (taken with multiplicity) add to n.
Original entry on oeis.org
2, 3, 4, 5, 8, 7, 15, 14, 21, 11, 35, 13, 33, 26, 39, 17, 65, 19, 51, 38, 57, 23, 95, 46, 69, 92, 115, 29, 161, 31, 87, 62, 93, 124, 155, 37, 217, 74, 111, 41, 185, 43, 123, 86, 129, 47, 215, 94, 141, 188, 235, 53, 329, 106, 159, 212, 265, 59, 371, 61, 177, 122
Offset: 2
a(8) = 15 = 3*5 because 15 is the smallest number whose prime divisors sum to 8.
a(10000) = 586519: Let pp(n) be the largest prime < n and the candidate being the current value that might be a(10000). Then we see that pp(10000 - 1) = 9973, giving a candidate 9973 * a(10000 - 9973) = 9973 * 92. pp(9973) = 9967, giving a candidate 9967 * a(10000 - 9967) = 9967 * 62. pp(9967) = 9949, giving the candidate 9949 * a(10000 - 9949) = 9962 * 188. This is larger than our candidate so we keep 9967 * 62 as our candidate. pp(9949) = 9941, giving a candidate 9941 * pp(10000 - 9941) = 9941 * 59. We see that (n - p) * a(p) >= (n - p) * p > candidate = 9941 * 59 for p > 59 so we stop iterating to conclude a(10000) = 9941 * 59 = 586519. - _David A. Corneth_, Mar 23 2018, edited by _M. F. Hasler_, Jan 19 2019
First column of array
A064364, n>=2.
See
A000792 for the maximal numbers whose prime factors sums up to n.
-
a056240 = (+ 1) . fromJust . (`elemIndex` a001414_list)
-- Reinhard Zumkeller, Jun 14 2012
-
A056240 := proc(n)
local k ;
for k from 1 do
if A001414(k) = n then
return k ;
end if;
end do:
end proc:
seq(A056240(n),n=2..80) ; # R. J. Mathar, Apr 15 2024
-
a = Table[0, {75}]; Do[b = Plus @@ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger[n]]; If[b < 76 && a[[b]] == 0, a[[b]] = n], {n, 2, 1000}]; a (* Robert G. Wilson v, May 04 2002 *)
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[b[k] == n, Return[k]]];
Table[a[n], {n, 2, 63}] (* Jean-François Alcover, Jul 03 2017 *)
-
isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j,1]*f[j,2]) == n;
a(n) = my(k=2); while(!isok(k, n), k++); k; \\ Michel Marcus, Jun 21 2017
-
a(n) = {if(n < 7, return(n + 2*(n==6))); my(p = precprime(n), res); if(p == n, return(p), p = precprime(n - 2); res = p * a(n - p); while(res > (n - p) * p && p > 2, p = precprime(p - 1); res = min(res, a(n - p) * p)); res)} \\ David A. Corneth, Mar 23 2018
-
A056240(n, p=n-1, m=oo)=if(n<6 || isprime(n), n, n==6, 8, until(p<3 || (n-p=precprime(p-1))*p >= m=min(m,A056240(n-p)*p),); m) \\ M. F. Hasler, Jan 19 2019
A288814
a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to n.
Original entry on oeis.org
4, 6, 8, 10, 15, 14, 21, 28, 35, 22, 33, 26, 39, 52, 65, 34, 51, 38, 57, 76, 95, 46, 69, 92, 115, 184, 161, 58, 87, 62, 93, 124, 155, 248, 217, 74, 111, 148, 185, 82, 123, 86, 129, 172, 215, 94, 141, 188, 235, 376, 329, 106, 159, 212, 265, 424, 371, 118, 177, 122, 183, 244, 305, 488, 427, 134, 201, 268, 335, 142
Offset: 4
a(5) = 6 = 2*3 is the smallest composite number whose prime divisors add to 5.
a(7) = 10 = 2*5 is the smallest composite number whose prime divisors add to 7.
12 = 2 * 2 * 3 is not in the sequence, since the sum of its prime divisors is 7, a value already obtained by the lesser 10. - _David A. Corneth_, Jun 22 2017
-
N:= 100: # to get a(4)..a(N)
V:= Array(4..N): count:= 0:
for k from 4 while count < N-3 do
if isprime(k) then next fi;
s:= add(t[1]*t[2], t = ifactors(k)[2]);
if s <= N and V[s]=0 then
V[s]:= k; count:= count+1;
fi
od:
convert(V,list); # Robert Israel, Feb 26 2018
# alternative
A288814 := proc(n)
local k ;
for k from 1 do
if not isprime(k) and A001414(k) = n then
return k ;
end if;
end do:
end proc:
seq(A288814(n),n=4..80) ; # R. J. Mathar, Apr 15 2024
-
Function[s, Table[FirstPosition[s, ?(# == n &)][[1]], {n, 4, 73}]]@ Table[Boole[CompositeQ@ n] Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[n]], {n, 10^3}] (* _Michael De Vlieger, Jun 19 2017 *)
f[n_] := If[ PrimeQ@ n, 0, spf = Plus @@ Flatten[ Table[#1, {#2}] & @@@ FactorInteger@ n]]; t[] := 0; k = 1; While[k < 500, If[ t[f[k]] == 0, t[f[k]] = k]; k++]; t@# & /@ Range[4, 73] (* _Robert G. Wilson v, Feb 26 2018 *)
-
isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j,1]*f[j,2]) == n;
a(n) = forcomposite(k=1,, if (isok(k, n), return(k))); \\ Michel Marcus, Jun 21 2017
-
lista(n) = {my(res = vector(n), s, todo); if(n < 4, return([]), todo = n-3); forcomposite(k=4, , f=factor(k); s = sum(j=1, #f~, f[j, 1]*f[j, 2]); if(s<=n, if(res[s]==0, res[s]=k; todo--; if(todo==0, return(vector(n-3, i, res[i+3]))))))} \\ David A. Corneth, Jun 21 2017
-
See PARI-link \\ David A. Corneth, Mar 23 2018
A295185
a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3.
Original entry on oeis.org
6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669
Offset: 3
5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
Cf.
A000040,
A056240,
A288814,
A292081,
A289993,
A288313,
A297150,
A298615,
A298252,
A297925,
A298366,
A288189.
-
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
-
a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017
A292081
Let b(k) be A056240(k); this sequence lists numbers b(2n) such that for some m > n, b(2m) < b(2n).
Original entry on oeis.org
35, 65, 95, 115, 161, 155, 217, 185, 215, 235, 329, 265, 371, 305, 427, 335, 365, 511, 395, 415, 581, 445, 623, 1246, 485, 515, 545, 565, 791, 1417, 1243, 1469, 2071, 635, 655, 917, 695, 973, 1507, 1529, 755, 1057, 785, 1099, 815, 835, 1169, 865, 1211, 905, 1267
Offset: 1
b(12) = 35 is included since b(14) = 33 < 35.
b(28) = 115 is in since b(32) = 87, b(34) = 93, and b(40) = 111 are all less than 115.
-
a056240=Cases[Import["https://oeis.org/A056240/b056240.txt","Table"],{,}][[All,2]]; even=Take[a056240,{1,Length[a056240],2}];leven=Length[even]; a292081= Select[even,#>Min[Part[even,1;;Position[even,#][[1,1]]]]&>Min[Part[even,Position[even,#][[1,1]];;leven]]&] (* Ivan N. Ianakiev, Nov 02 2023 *)
A298252
Even integers n such that n-3 is prime.
Original entry on oeis.org
6, 8, 10, 14, 16, 20, 22, 26, 32, 34, 40, 44, 46, 50, 56, 62, 64, 70, 74, 76, 82, 86, 92, 100, 104, 106, 110, 112, 116, 130, 134, 140, 142, 152, 154, 160, 166, 170, 176, 182, 184, 194, 196, 200, 202, 214, 226, 230, 232, 236, 242, 244, 254, 260, 266, 272, 274, 280
Offset: 1
a(1)=6 because 6-3=3; prime, and no smaller even number has this property; also a(1)=A113935(2)=6. a(2)=8 because 8-3=5 is prime; also A113935(3)=8.
12 is not in the sequence because 12-3 = 9, composite.
-
Filtered([1..300],n->IsEvenInt(n) and IsPrime(n-3)); # Muniru A Asiru, Mar 23 2018
-
[NthPrime(n+1) +3: n in [1..70]]; // G. C. Greubel, May 21 2019
-
N:=200
for n from 6 to N by 2 do
if isprime(n-3) then print(n);
end if
end do
-
Select[2 Range@125, PrimeQ[# - 3] &] (* Robert G. Wilson v, Jan 15 2018 *)
Select[Prime[Range[100]]+3,EvenQ] (* Harvey P. Dale, Mar 07 2022 *)
-
a(n) = prime(n + 1) + 3 \\ David A. Corneth, Mar 23 2018
-
[nth_prime(n+1) +3 for n in (1..70)] # G. C. Greubel, May 21 2019
A289993
Primes p such that gpf(A288814(p)) < q, where q is greatest prime < p.
Original entry on oeis.org
211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4327, 4441, 4547, 4561, 4751, 4783, 4813, 4861, 5147, 5261, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6673, 6883, 6947, 7103, 7283, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 7993, 8419, 8443
Offset: 1
p=211 is a candidate for inclusion because p-q = 211-199 = 12, and b(12)=35 is a term in A292081. Since r=197 is the next prime below q, p-r = 14 and b(14) = 33 < 35, 211 is in the sequence, of type 2.
Conversely, p=809, which also has gap p-q = 12, is not in the sequence because the only number n > 12 for which b(n) < b(12)=35 is n=14, and p-14 = 795 is not prime. Therefore b(809) = 797*b(12) = 27895, and 809 is of type 1.
-
N:= 10^7: # to get terms before the first prime p>3 such that A288814(p) > N
Res:= NULL:
for x from 4 to N do
if isprime(x) then next fi;
F:= ifactors(x)[2];
p:= add(t[1]*t[2],t=F);
if not isprime(p) then next fi;
if not assigned(A288814[p]) then
A288814[p]:= x;
w:= max(seq(t[1],t=F));
if w < prevprime(p) then
Res:= Res, p
fi
fi
od:
pmax:= Res[-1]:
Primes:= select(isprime, [seq(i,i=5..pmax,2)]):
B:= remove(p -> assigned(A288814[p]), Primes):
sort(select(`<`,[Res], min(B))); # Robert Israel, Oct 19 2017
-
\\ See PARI link. - David A. Corneth, Mar 23 2018
A297150
Let b(k) denote A292081(k); the sequence lists numbers b(2n) where for all m > n, b(2m) > b(2n).
Original entry on oeis.org
35, 65, 95, 115, 155, 185, 215, 235, 265, 305, 335, 365, 395, 415, 445, 485, 515, 545, 565, 635, 655, 695, 755, 785, 815, 835, 865, 905, 965, 995, 1055, 1115, 1145, 1165, 1205, 1255, 1285, 1315, 1355, 1385, 1415, 1465, 1535, 1565, 1585, 1655, 1685, 1745, 1765, 1795, 1835, 1865, 1895, 1915, 1945, 1985
Offset: 1
a(1)=5*A049591(1)=5*7=35. Also A056240(A297925(1))=A056240(12)=35.
a(17)=5*A049591(17)=5*103=515. Also A056240(A297925(17))=A056240(108)=515.
-
[5*p: p in PrimesInInterval(3, 500) | not IsPrime(p + 2)]; // Vincenzo Librandi, Nov 12 2018
-
5 Select[Prime[Range[3, 100]], ! PrimeQ[(# + 2)] &] (* Vincenzo Librandi, Nov 12 2018 *)
A298615
Let b(k) be A056240(k); this sequence lists numbers b(2n) such that there is at least one m > n for which b(2m) < b(2n) belongs to A297150.
Original entry on oeis.org
161, 217, 329, 371, 427, 511, 581, 623, 1246, 791, 1417, 1243, 1469, 2071, 917, 973, 1507, 1529, 1057, 1099, 1169, 1211, 1267, 1969, 1991, 1393, 2167, 2189, 2587, 1477, 2954, 2321, 2743, 1631, 1687, 2629, 2651, 1757, 1799, 1841, 1897, 1981, 3091, 3113, 2051, 4102
Offset: 1
n=1, a(1) = A056240(A298366(1)) = A056240(30) = 161;
n=24, a(24) = A056240(A298366(24)) = A056240(190) = 1969.
-
A056240(n, p=n-1, m=oo)=if(n<6 || isprime(n), n, n==6, 8, until(p<3 || (n-p=precprime(p-1))*p >= m=min(m, A056240(n-p)*p), ); m);
is_A298366(n)= !isprime(n-5) && !isprime(n-3) && !(n%2) && (n>5);
lista(nn) = {for (n=0, nn, if (is_A298366(n), print1(A056240(n), ", ")););} \\ Michel Marcus, Apr 03 2020
Showing 1-8 of 8 results.
Comments