A299760 Primes p with index k >= 3 such that A288189(k) = A295185(k).
5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 59, 61, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 131, 139, 151, 167, 173, 179, 181, 193, 197, 199, 227, 229, 233, 239, 241, 269, 271, 281, 283, 311, 313, 317, 349, 353, 359, 379, 383, 389, 401, 421, 433, 439, 443, 449, 461, 463, 467, 491, 503, 509, 523, 569, 571, 599, 601, 607
Offset: 1
Keywords
Examples
p=29 is included because 2p-3 and 3p-2 are both composite so A(29) = 8(p-6) = 8(p-6) = 8*23 = 184 = B(29). p=37 is not included since A(37) = 3(2p-3) = 213 whereas B(37) = X(6)(37-6) = 8*31 = 248, so A(37) < B(37). In both examples g=6.
Programs
-
PARI
sopfr(k) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]); ap288189(p) = forcomposite(c=p, , if (!(sopfr(c) % p), return(c))); ap295185(p) = forcomposite(c=p, , if (sopfr(c) == p, return(c))); isok(p) = isprime(p) && (ap288189(p)==ap295185(p)); \\ Michel Marcus, Apr 14 2018
Comments