cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A289993 Primes p such that gpf(A288814(p)) < q, where q is greatest prime < p.

Original entry on oeis.org

211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4327, 4441, 4547, 4561, 4751, 4783, 4813, 4861, 5147, 5261, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6673, 6883, 6947, 7103, 7283, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 7993, 8419, 8443
Offset: 1

Views

Author

David James Sycamore, Sep 13 2017

Keywords

Comments

For prime p in this sequence, b(p) = r*b(p-r) where b(m) = A288814(m), and r = gpf(b(p)) is some prime < q. We can say that prime p_n (n > 2) is of type k if gpf(b(p_n)) = p_(n-k).
Prime gap p-q, and pattern of gaps p-r determines if p is in the sequence or not. Prime p is of type k > 2 only if p-q is one of the even indices of A056240 on which A292081 is defined (12,18,24,28,30,36,...), and if there is a prime r < q < p such that b(p-r) < b(p-q).

Examples

			p=211 is a candidate for inclusion because p-q = 211-199 = 12, and b(12)=35 is a term in A292081. Since r=197 is the next prime below q, p-r = 14 and b(14) = 33 < 35, 211 is in the sequence, of type 2.
Conversely, p=809, which also has gap p-q = 12, is not in the sequence because the only number n > 12 for which b(n) < b(12)=35 is n=14, and p-14 = 795 is not prime. Therefore b(809) = 797*b(12) = 27895, and 809 is of type 1.
		

Crossrefs

Programs

  • Maple
    N:= 10^7: # to get terms before the first prime p>3 such that A288814(p) > N
    Res:= NULL:
    for x from 4 to N do
      if isprime(x) then next fi;
      F:= ifactors(x)[2];
      p:= add(t[1]*t[2],t=F);
      if not isprime(p) then next fi;
      if not assigned(A288814[p]) then
        A288814[p]:= x;
        w:= max(seq(t[1],t=F));
        if w < prevprime(p) then
          Res:= Res, p
        fi
      fi
    od:
    pmax:= Res[-1]:
    Primes:= select(isprime, [seq(i,i=5..pmax,2)]):
    B:= remove(p -> assigned(A288814[p]), Primes):
    sort(select(`<`,[Res], min(B))); # Robert Israel, Oct 19 2017
  • PARI
    \\ See PARI link. - David A. Corneth, Mar 23 2018

Extensions

a(30)-a(50) from Robert Israel, Oct 02 2017
Edited by Michel Marcus, Nov 15 2023

A290163 Primes p such that A288814(4*p) - A288814(3*p) = 7.

Original entry on oeis.org

2, 19, 29, 59, 79, 89, 131, 149, 151, 389, 479, 499, 521, 571, 631, 659, 701, 739, 919, 941, 971, 1069, 1279, 1289, 1361, 1381, 1451, 1471, 1489, 1669, 1949, 2069, 2089, 2131, 2549, 2609, 2749, 2791, 3011, 3109, 3181, 3251, 3361, 3389, 3539, 3581, 3659, 4049, 4091, 4139
Offset: 1

Views

Author

David James Sycamore, Jul 22 2017

Keywords

Comments

Proper subset of A290164.
Terms of A290164 not in this sequence include 5, 11, 61, 191, 431, 541, 1181, 3571, ... corresponding to primes p such that A(4*p) - A(3*p) = A(3*p) - 1, where A=A288814. Examples: A(4*5) - A(3*5) = 51 - 26 = 25; A(4*541) - A(3*541) = 6483 - 3242 = 3241.

Examples

			A288814(4*2) - A288814(3*2) = 15 - 8 = 7, therefore prime 2 is in the sequence;
A288814(4*19) - A288814(3*19) = 219 - 212 = 7, therefore prime 19 is a term.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[Boole[CompositeQ@ #] Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[#]] &, 10^5]}, Select[Prime@ Range[600], Function[p, FirstPosition[s, ?(# == 4 p &)][[1]] - FirstPosition[s, ?(# == 3 p &)][[1]] == 7]]] (* Michael De Vlieger, Jul 23 2017 *)

Extensions

More terms from Altug Alkan, Jul 23 2017
Edited by Robert Israel, Jul 24 2017

A300097 Primes for which A288814 gives a new record.

Original entry on oeis.org

5, 7, 11, 17, 23, 29, 37, 53, 59, 67, 79, 89, 97, 127, 191, 211, 223, 307, 331, 479, 521, 541, 809, 877, 907, 1087, 1277, 1361, 1931, 2179, 2203, 2999, 3299, 4201, 4327, 4861, 5779, 7993, 8923, 12889, 14143, 15859, 16411, 16603, 18839, 19661, 24317, 25523, 28277
Offset: 1

Views

Author

Michel Marcus, Feb 24 2018

Keywords

Comments

These are the primes that require the most effort when searching for the least composite c such that A001414(c) is a given prime, where A001414 is sopfr (sum of prime factors with repetition).
From David James Sycamore, Feb 25 2018: (Start)
Also primes for which A295185 gives a new record.
A006512 gives primes p requiring least effort, since then c=2*(p-2). (End)

Crossrefs

Programs

  • PARI
    isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
    scompo(n) = forcomposite(k=4, ,if (isok(k, n), return(k)));
    lista(nn) = {my(last = 0); forprime(p=4, nn, my(val = scompo(p)); if (val > last, print1(p, ", "); last = val););}

A300098 Records of A288814.

Original entry on oeis.org

6, 10, 28, 52, 76, 184, 248, 376, 424, 488, 584, 664, 1335, 3729, 3801, 6501, 7385, 9669, 10461, 16345, 17815, 26571, 27895, 28479, 45237, 69485, 81835, 123411, 124345, 140465, 207005, 341665, 361749, 396815, 526809, 592491, 890165, 977727, 1377485, 1992215, 2186585
Offset: 1

Views

Author

Michel Marcus, Feb 24 2018

Keywords

Comments

Also records of A295185.

Crossrefs

Programs

  • PARI
    isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
    scompo(n) = forcomposite(k=4, ,if (isok(k, n), return(k)));
    lista(nn) = {my(last = 0); forprime(p=4, nn, my(val = scompo(p)); if (val > last, print1(val, ", "); last = val););}

Formula

a(n) = A288814(A300097(n)).

A301592 Numbers k at which the ratio A288814(k) / k reaches a record high.

Original entry on oeis.org

4, 5, 6, 7, 8, 10, 11, 12, 17, 18, 24, 28, 29, 37, 53, 59, 67, 79, 89, 95, 97, 121, 123, 125, 223, 305, 329, 479, 521, 539, 541, 905, 1087, 1147, 1277, 1345, 1351, 1355, 1357, 5779, 8923, 10003, 11773, 12883, 19371, 19651, 19657, 28277, 31445
Offset: 1

Views

Author

David A. Corneth, Mar 24 2018

Keywords

Examples

			A288814(10) / 10 = 21 / 10 and for n < 10 all ratios are less than 21 / 10, so 10 is in the sequence.
		

Crossrefs

Cf. A288814.

Programs

  • Mathematica
    Block[{s = Array[If[PrimeQ@ #, 0, Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #]] &, 10^5, 2], t}, t = Table[(1 + FirstPosition[s, k][[1]])/k, {k, 4, LengthWhile[Differences@ Rest@ Union@ s, # == 1 &]}]; Map[3 + FirstPosition[t, #][[1]] &, Union@ FoldList[Max, t]]] (* Michael De Vlieger, Mar 26 2018 *)
  • PARI
    isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
    f(n) = forcomposite(k=1, , if (isok(k, n), return(k))); /* A288814 */
    lista(nn) = {maxr = 0; for (n=4, nn, if ((newr=f(n)/n) > maxr, print1(n, ", "); maxr = newr););} \\ Michel Marcus, Mar 26 2018

A000792 a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 729, 972, 1458, 2187, 2916, 4374, 6561, 8748, 13122, 19683, 26244, 39366, 59049, 78732, 118098, 177147, 236196, 354294, 531441, 708588, 1062882, 1594323, 2125764, 3188646, 4782969, 6377292
Offset: 0

Views

Author

Keywords

Comments

Numbers of the form 3^k, 2*3^k, 4*3^k with a(0) = 1 prepended.
If a set of positive numbers has sum n, this is the largest value of their product.
In other words, maximum of products of partitions of n: maximal value of Product k_i for any way of writing n = Sum k_i. To find the answer, take as many of the k_i's as possible to be 3 and then use one or two 2's (see formula lines below).
a(n) is also the maximal size of an Abelian subgroup of the symmetric group S_n. For example, when n = 6, one of the Abelian subgroups with maximal size is the subgroup generated by (123) and (456), which has order 9. [Bercov and Moser] - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Also the maximum number of maximal cliques possible in a graph with n vertices (cf. Capobianco and Molluzzo). - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 15 2001 [Corrected by Jim Nastos and Tanya Khovanova, Mar 11 2009]
Every triple of alternate terms {3*k, 3*k+2, 3*k+4} in the sequence forms a geometric progression with first term 3^k and common ratio 2. - Lekraj Beedassy, Mar 28 2002
For n > 4, a(n) is the least multiple m of 3 not divisible by 8 for which omega(m) <= 2 and sopfr(m) = n. - Lekraj Beedassy, Apr 24 2003
Maximal number of divisors that are possible among numbers m such that A080256(m) = n. - Lekraj Beedassy, Oct 13 2003
Or, numbers of the form 2^p*3^q with p <= 2, q >= 0 and 2p + 3q = n. Largest number obtained using only the operations +,* and () on the parts 1 and 2 of any partition of n into these two summands where the former exceeds the latter. - Lekraj Beedassy, Jan 07 2005
a(n) is the largest number of complexity n in the sense of A005520 (A005245). - David W. Wilson, Oct 03 2005
a(n) corresponds also to the ultimate occurrence of n in A001414 and thus stands for the highest number m such that sopfr(m) = n, for n >= 2. - Lekraj Beedassy, Apr 29 2002
a(n) for n >= 1 is a paradigm shift sequence with procedural length p = 0, in the sense of A193455. - Jonathan T. Rowell, Jul 26 2011
a(n) = largest term of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
For n >= 2, a(n) is the largest number whose prime divisors (with multiplicity) add to n, whereas the smallest such number (resp. smallest composite number) is A056240(n) (resp. A288814(n)). - David James Sycamore, Nov 23 2017
For n >= 3, a(n+1) = a(n)*(1 + 1/s), where s is the smallest prime factor of a(n). - David James Sycamore, Apr 10 2018

Examples

			a{8} = 18 because we have 18 = (8-5)*a(5) = 3*6 and one can verify that this is the maximum.
a(5) = 6: the 7 partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) and the corresponding products are 5, 4, 6, 3, 4, 2 and 1; 6 is the largest.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 18*x^8 + ...
		

References

  • B. R. Barwell, Cutting String and Arranging Counters, J. Rec. Math., 4 (1971), 164-168.
  • B. R. Barwell, Journal of Recreational Mathematics, "Maximum Product": Solution to Prob. 2004;25(4) 1993, Baywood, NY.
  • M. Capobianco and J. C. Molluzzo, Examples and Counterexamples in Graph Theory, p. 207. North-Holland: 1978.
  • S. L. Greitzer, International Mathematical Olympiads 1959-1977, Prob. 1976/4 pp. 18;182-3 NML vol. 27 MAA 1978
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 396.
  • P. R. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. Amer., 1991, pp. 30-31 and 188.
  • L. C. Larson, Problem-Solving Through Problems. Problem 1.1.4 pp. 7. Springer-Verlag 1983.
  • D. J. Newman, A Problem Seminar. Problem 15 pp. 5;15. Springer-Verlag 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A007600 for a left inverse.
Cf. array A064364, rightmost (nonvanishing) numbers in row n >= 2.
See A056240 and A288814 for the minimal numbers whose prime factors sums up to n.
A000792, A178715, A193286, A193455, A193456, and A193457 are closely related as paradigm shift sequences for (p = 0, ..., 5 respectively).
Cf. A202337 (subsequence).

Programs

  • Haskell
    a000792 n = a000792_list !! n
    a000792_list = 1 : f [1] where
       f xs = y : f (y:xs) where y = maximum $ zipWith (*) [1..] xs
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[1,1,2,3,4]; [n le 5 select I[n] else 3*Self(n-3): n in [1..45]]; // Vincenzo Librandi, Apr 14 2015
  • Maple
    A000792 := proc(n)
        m := floor(n/3) ;
        if n mod 3 = 0 then
            3^m ;
        elif n mod 3 = 1 then
            4*3^(m-1) ;
        else
            2*3^m ;
        end if;
        floor(%) ;
    end proc: # R. J. Mathar, May 26 2013
  • Mathematica
    a[1] = 1; a[n_] := 4* 3^(1/3 *(n - 1) - 1) /; (Mod[n, 3] == 1 && n > 1); a[n_] := 2*3^(1/3*(n - 2)) /; Mod[n, 3] == 2; a[n_] := 3^(n/3) /; Mod[n, 3] == 0; Table[a[n], {n, 0, 40}]
    CoefficientList[Series[(1 + x + 2x^2 + x^4)/(1 - 3x^3), {x, 0, 50}], x] (* Harvey P. Dale, May 01 2011 *)
    f[n_] := Max[ Times @@@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]]; f[1] = 1; Array[f, 43, 0] (* Robert G. Wilson v, Jul 31 2012 *)
    a[ n_] := If[ n < 2, Boole[ n > -1], 2^Mod[-n, 3] 3^(Quotient[ n - 1, 3] + Mod[n - 1, 3] - 1)]; (* Michael Somos, Jan 23 2014 *)
    Join[{1, 1}, LinearRecurrence[{0, 0, 3}, {2, 3, 4}, 50]] (* Jean-François Alcover, Jan 08 2019 *)
    Join[{1,1},NestList[#+Divisors[#][[-2]]&,2,41]] (* James C. McMahon, Aug 09 2024 *)
  • PARI
    {a(n) = floor( 3^(n - 4 - (n - 4) \ 3 * 2) * 2^( -n%3))}; /* Michael Somos, Jul 23 2002 */
    
  • PARI
    lista(nn) = {print1("1, 1, "); print1(a=2, ", "); for (n=1, nn, a += a/divisors(a)[2]; print1(a, ", "););} \\ Michel Marcus, Apr 14 2015
    
  • PARI
    A000792(n)=if(n>1,3^((n-2)\3)*(2+(n-2)%3),1) \\ M. F. Hasler, Jan 19 2019
    

Formula

G.f.: (1 + x + 2*x^2 + x^4)/(1 - 3*x^3). - Simon Plouffe in his 1992 dissertation.
a(3n) = 3^n; a(3*n+1) = 4*3^(n-1) for n > 0; a(3*n+2) = 2*3^n.
a(n) = 3*a(n-3) if n > 4. - Henry Bottomley, Nov 29 2001
a(n) = n if n <= 2, otherwise a(n-1) + Max{gcd(a(i), a(j)) | 0 < i < j < n}. - Reinhard Zumkeller, Feb 08 2002
A007600(a(n)) = n; Andrew Chi-Chih Yao attributes this observation to D. E. Muller. - Vincent Vatter, Apr 24 2006
a(n) = 3^(n - 2 - 2*floor((n - 1)/3))*2^(2 - (n - 1) mod 3) for n > 1. - Hieronymus Fischer, Nov 11 2007
From Kiyoshi Akima (k_akima(AT)hotmail.com), Aug 31 2009: (Start)
a(n) = 3^floor(n/3)/(1 - (n mod 3)/4), n > 1.
a(n) = 3^(floor((n - 2)/3))*(2 + ((n - 2) mod 3)), n > 1. (End)
a(n) = (2^b)*3^(C - (b + d))*(4^d), n > 1, where C = floor((n + 1)/3), b = max(0, ((n + 1) mod 3) - 1), d = max(0, 1 - ((n + 1) mod 3)). - Jonathan T. Rowell, Jul 26 2011
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x / (1 + x / (1 + x^2 / (1 + x))))))). - Michael Somos, May 12 2012
3*a(n) = 2*a(n+1) if n > 1 and n is not divisible by 3. - Michael Somos, Jan 23 2014
a(n) = a(n-1) + largest proper divisor of a(n-1), n > 2. - Ivan Neretin, Apr 13 2015
a(n) = max{a(i)*a(n-i) : 0 < i < n} for n >= 4. - Jianing Song, Feb 15 2020
a(n+1) = a(n) + A038754(floor( (2*(n-1) + 1)/3 )), for n > 1. - Thomas Scheuerle, Oct 27 2022

Extensions

More terms and better description from Therese Biedl (biedl(AT)uwaterloo.ca), Jan 19 2000

A108605 Semiprimes with prime sum of factors: twice the lesser of the twin prime pairs.

Original entry on oeis.org

6, 10, 22, 34, 58, 82, 118, 142, 202, 214, 274, 298, 358, 382, 394, 454, 478, 538, 562, 622, 694, 838, 862, 922, 1042, 1138, 1198, 1234, 1282, 1318, 1618, 1642, 1654, 1714, 1762, 2038, 2062, 2098, 2122, 2182, 2302, 2458, 2554, 2578, 2602, 2638, 2854, 2902
Offset: 1

Views

Author

Zak Seidov, Jun 12 2005

Keywords

Comments

All terms are even. (Cf. formula.)
The definition implies that the sum of factors is the sum over the prime factors with multiplicity, as in A001414. - R. J. Mathar, Nov 28 2008
The sum of factors of a semiprime pq is p+q, which can only be prime if {p, q} = {2, odd prime}. Requiring the sum to be prime then implies that the semiprime is twice the lesser of a twin prime pair. - M. F. Hasler, Apr 07 2015
Subsequence of A288814, each term being of the form A288814(p), where p is the greatest of a pair of twin primes. - David James Sycamore, Aug 29 2017

Examples

			58=2*29 and 2+29 is prime.
		

Crossrefs

Cf. A001358 semiprimes, A001359 lesser of twin primes, A101605 3-almost primes, A108606 semiprimes with prime sum of digits, A108607 intersection of A108605 and A108606.

Programs

  • Mathematica
    Select[Range[2, 3000, 2], !IntegerQ[Sqrt[ # ]]&&Plus@@(Transpose[FactorInteger[ # ]])[[2]]==2&&PrimeQ[Plus@@(Transpose[FactorInteger[ # ]])[[1]]]&]
    Select[Range[2,3000,2],PrimeOmega[#]==PrimeNu[#]==2&&PrimeQ[Total[ FactorInteger[ #][[;;,1]]]]&] (* Harvey P. Dale, Apr 10 2023 *)
  • PARI
    list(lim)=my(v=List(),p=2); forprime(q=3,lim\2+1, if(q-p==2, listput(v,2*p)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017

Formula

a(n)=2*p, with p and 2+p twin primes: a(n)=2*A001359(n).

Extensions

Changed division by 2 to multiplication by 2 in formula related to A001359. - R. J. Mathar, Nov 28 2008

A295185 a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3.

Original entry on oeis.org

6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669
Offset: 3

Views

Author

David James Sycamore, Nov 16 2017

Keywords

Comments

Sequence is undefined for n=1,2 since no composites exist whose prime divisors sum to 2, 3. For n >= 3, a(n) = A288814(prime(n)) = prime(n-k)*B(prime(n) - prime(n-k)) where B=A056240, and k >= 1 is the "type" of prime(n), indicated as prime(n)~k(g1,g2,...,gk) where gi = prime(n-(i-1)) - prime(n-i); 1 <= i <= k. Thus: 5~1(2), 211~2(12,2), 4327~3(30,8,6) etc. The sequence relates to gaps between odd primes, and in particular to the sequence of k prime gaps below prime(n). The even-indexed terms of B are relevant, as are those of subsequences:
C=A288313, 2,4 plus terms B(n) where n-3 is prime (A298252),
D=A297150, terms B(n) where n-5 is prime and n-3 is composite (A297925) and
E=A298615, terms B(n) where both n-3 and n-5 are composite (A298366).
The above sequences of indices 2m form a partition of the even numbers and the corresponding terms B(2m) form a partition of the even-indexed terms of A056240. The union of D and E is the sequence A292081 = B-C.
Let g(n,t) = prime(n) - prime(n-t), t < n, and h(n,t) = g(n,t) - g(n,1), 1 < t < n. If g1=g(n,1) is a term in A298252 (g1-3 is prime), then B(g1) is a term in C, so k=1. If g1 belongs to A297925 or A298366 then B(g1) is a term in D or E and the value of k depends on subsequent gaps below prime(n), within a range dependent on g1.
Let range R1(g1) = u - g(n,1) where u is the index in B of the greatest term in C such that C(u) < B(g1). Let range R2(g1) = v-g(n,1) where v is the index in B of the greatest term in D such that D(v) <= B(g1). For all n, R2 < R1, and if g1 is a term in D then R2(g1)=0. Examples: R1(12)=2, R2(12)=0, R1(30)=26, R2(30)=6.
k >= 1 is the smallest integer such that B(g(n,k)) <= B(g(n,t)) for all t satisfying g1 <= g(n,t) <= g1 + R1(g1). For g1-3 prime, k=1. If g1-3 is composite, let z be least integer > 1 such that g(n,z)-3 is prime, and let w be least integer >= 1 such that g(n,w)-5 is prime. Then z "complies" if h(n,z) <= R1, and w "complies" if h(n,w) <= R2. If g1-5 is prime then R2=w=0 and only z is relevant.
B(g1) must belong to C,D or E. If in C (g1-3 is prime) then k=1. If in D (g1-5 is prime), k=z if z complies, otherwise k=1. If B(g1) is in E and z complies but not w then k=z, or if w complies but not z then k=w. If B(g1) is in E and z,w both comply then k=z if 3*(g(n,z)-3) < 5*(g(n,w)-5), otherwise k=w. If neither z nor w comply, then k=1.
Conjecture: For all n >= 3, a(n) >= A288189(n).

Examples

			5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply  but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
    a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
    Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
  • PARI
    a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017

Formula

a(n) = A288814(prime(n)) = prime(n-k)*A056240(prime(n) - prime(n-k)) for some k >= 1 and prime(n-k) = gpf(A288814(prime(n)).
a(n) >= A288189(n).

A259730 Primes p such that both 2*p - 3 and 3*p - 2 are prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 37, 43, 53, 67, 71, 113, 127, 137, 167, 181, 191, 193, 211, 251, 263, 331, 347, 373, 431, 433, 443, 461, 487, 587, 727, 751, 757, 907, 991, 1021, 1091, 1103, 1171, 1187, 1213, 1231, 1297, 1367, 1453, 1483, 1597, 1637, 1663, 1667, 1733
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2015

Keywords

Comments

A010051(2*a(n) - 3) * A010051(3*a(n) - 2) = 1;
A259758(n) = (2*a(n) - 3) * (3*a(n) - 2).
Except for a(1)=3 this is the same sequence as primes p such that A288814(3*p) - A288814(2*p) = 5. - David James Sycamore, Jul 22 2017
Furthermore, (A288814(3*p)*A288814(2*p))/6 belongs to A259758. - David James Sycamore, Jul 23 2017

Crossrefs

Intersection of A063908 and A088878; A172287, A259758.

Programs

  • Haskell
    import Data.List.Ordered (isect)
    a259730 n = a259730_list !! (n-1)
    a259730_list = a063908_list `isect` a088878_list
    
  • Mathematica
    Select[Prime@ Range@ 270, Times @@ Boole@ Map[PrimeQ, {2 # - 3, 3 # - 2}] > 0 &] (* Michael De Vlieger, Jul 22 2017 *)
    Select[Prime[Range[300]],AllTrue[{2#-3,3#-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 08 2020 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if(isprime(2*p-3) && isprime(3*p-2), print1(p, ", "))); \\ Altug Alkan, Jul 22 2017

A293652 a(n) is the smallest prime number whose a056240-type is n (see Comments).

Original entry on oeis.org

5, 211, 4327, 4547, 25523, 81611, 966109, 1654111, 3851587, 1895479, 66407189, 134965049, 129312889, 425845151, 35914507, 504365461, 2400397969, 8490141637, 8429770031, 20416021309, 23555107819, 23912414437
Offset: 1

Views

Author

David James Sycamore, Feb 06 2018

Keywords

Comments

For a prime p >= 5 whose prime-index is m, the a056240-type of p is defined to be the unique integer k such that A288814(p) = prime(m-k)*A056240(prime(m)-prime(m-k)).
In other words, k is such that prime(n-k) is the greatest prime divisor of the smallest composite number whose sum of prime factors (taken with multiplicity) is prime(n).
The sequence lists the smallest prime of each successive a056240-type.
In the Examples section, the a056240-type k (=a(k)) of a prime p = prime(m) is indicated by p ~ k(g1,g2,...,gk) where gi = prime(m - i + 1) - prime(m - i). See also A295185.
For the values of the a056240-types of the primes 2, 3, 5, 7, ... see A299912. - N. J. A. Sloane, Mar 10 2018
a(20), a(21) > 14 * 10^9. Conjecture: a(k) > 14 * 10^9 for k > 22. - David A. Corneth, Mar 25 2018
a(20), a(21) computed on the basis of the above conjecture. Note that A321983 records the smallest composite number whose sum of prime divisors (with repetition) is a(n). - David James Sycamore, Nov 30 2018
a(23)..a(25) > 45.8 * 10^9. - David A. Corneth, Dec 02 2018

Examples

			a(1) = 5 since 6 = 3 * 2, the smallest composite number whose prime divisors add to 5, is a multiple of 3, the greatest prime < 5, so k=1; 5 ~ 1(2).
a(2) = 211 since 6501 = 3 * 11 * 197, the smallest composite whose prime divisors add to 211, and 197 < 199 < 211 is the second prime below 211, so k=2, and 211 ~ 2(12,2), and since no smaller prime has this property, a(2)=211.
a(3) = 4327 since 526809 = 3 * 41 * 4283, the smallest composite whose prime divisors add to 4327, and 4283 < 4289 < 4297 < 4327 is the third prime below 4327, so k=3, 4327 ~ 3(30,8,6) and since no smaller prime has this property, a(3)=4327. Likewise,
a(4) = 4547 ~ 4(24, 4, 2, 4),
a(5) = 25523 ~ 5(52, 2, 6, 6, 4),
a(6) = 81611 ~ 6(42, 6, 4, 6, 2, 4),
a(7) = 966109 ~ 7(68, 12, 16, 2, 22, 6, 14),
a(8) = 1654111 ~ 8(54, 14, 4, 6, 2, 4, 6, 2),
a(9) = 3851587 ~ 9(128, 16, 12, 2, 6, 10, 14, 10, 2),
a(10) = 1895479 ~ 10(120, 2, 6, 30, 4, 30, 14, 10, 2, 12),
a(11) = 66407189 ~ 11(120, 6, 6, 16, 14, 6, 4, 8, 10, 2, 4),
a(12) = 134965049 ~ 12(138, 10, 2, 22, 18, 20, 6, 12, 18, 16, 8, 10),
a(13) = 129312889 ~ 13(98, 60, 22, 18, 8, 4, 18, 12, 38, 24, 6, 4, 8),
a(14) = 425845151 ~ 14(148, 2, 42, 16, 50, 24, 12, 6, 4, 20, 6, 48, 10, 12),
a(15) = 35914859 ~ 15(126, 82, 8, 4, 18, 12, 8, 4, 14, 6, 16, 8, 6, 30, 10),
a(16) = 504365461 ~ 16(122, 42, 10, 14, 36, 4, 6, 6, 12, 48, 2, 6, 10, 20, 6, 6),
a(17) = 2400397969 ~ 17(122, 58, 8, 4, 18, 36, 2, 4, 6, 32, 10, 2, 16,12,18,32,12),
a(18) = 8490141637 ~ 18(126, 2, 82, 8, 52, 20, 34, 2, 10, 24, 8, 6,34,2,6,28,24,2),
a(19) = 8429770031 ~ 19(148, 26, 16, 18, 12, 2, 18, 18, 10,20,4,2,6,18,6,4,2,18,4),
a(20) = 20416021309 ~ 20(122, 4, 2, 64, 20, 40, 6, 12, 12, 20, 10, 6, 8, 10, 30, 2, 10, 38, 22, 140,
a(21) = 23555107819 ~ 21(192, 20, 156, 30, 18, 10, 2, 12, 58, 12, 12, 26, 28, 32, 4, 6, 12, 2, 6, 22, 2),
a(22) = 23912414437 ~ 22(344, 4, 12, 14, 40, 2, 4, 18, 2, 36, 10, 12, 2, 10, 26, 10, 24, 14, 40, 30, 14, 12).
		

Crossrefs

Programs

  • PARI
    isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
    snumbr(n) = my(k=2); while(!isok(k, n), k++); k; /* A056240 */
    scompo(n) = forcomposite(k=4, , if (isok(k, n), return(k))); /* A288814 */
    a(n) = {forprime(p=5,,ip = primepi(p); if (ip > n, x = scompo(p); fmax = vecmax(factor(x)[,1]); ifmax = primepi(fmax); if (ip - ifmax == n, y = fmax*snumbr(p - fmax;); if (y == x, return (p);););););} \\ Michel Marcus, Feb 17 2018
    
  • PARI
    \\ see Corneth link

Extensions

a(7)-a(10) from Michel Marcus, Feb 23 2018
Name changed by N. J. A. Sloane, Mar 10 2018
a(11)-a(19) from David A. Corneth, Mar 24 2018, Mar 25 2018
a(20)-a(21) from David James Sycamore, Nov 30 2018
a(22) from David A. Corneth, Dec 02 2018
Showing 1-10 of 16 results. Next