A289993 Primes p such that gpf(A288814(p)) < q, where q is greatest prime < p.
211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4327, 4441, 4547, 4561, 4751, 4783, 4813, 4861, 5147, 5261, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6673, 6883, 6947, 7103, 7283, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 7993, 8419, 8443
Offset: 1
Examples
p=211 is a candidate for inclusion because p-q = 211-199 = 12, and b(12)=35 is a term in A292081. Since r=197 is the next prime below q, p-r = 14 and b(14) = 33 < 35, 211 is in the sequence, of type 2. Conversely, p=809, which also has gap p-q = 12, is not in the sequence because the only number n > 12 for which b(n) < b(12)=35 is n=14, and p-14 = 795 is not prime. Therefore b(809) = 797*b(12) = 27895, and 809 is of type 1.
Links
- David A. Corneth, Table of n, a(n) for n = 1..31763 (terms up to 5*10^6; first 544 terms from Robert Israel)
- David A. Corneth, PARI program.
Programs
-
Maple
N:= 10^7: # to get terms before the first prime p>3 such that A288814(p) > N Res:= NULL: for x from 4 to N do if isprime(x) then next fi; F:= ifactors(x)[2]; p:= add(t[1]*t[2],t=F); if not isprime(p) then next fi; if not assigned(A288814[p]) then A288814[p]:= x; w:= max(seq(t[1],t=F)); if w < prevprime(p) then Res:= Res, p fi fi od: pmax:= Res[-1]: Primes:= select(isprime, [seq(i,i=5..pmax,2)]): B:= remove(p -> assigned(A288814[p]), Primes): sort(select(`<`,[Res], min(B))); # Robert Israel, Oct 19 2017
-
PARI
\\ See PARI link. - David A. Corneth, Mar 23 2018
Extensions
a(30)-a(50) from Robert Israel, Oct 02 2017
Edited by Michel Marcus, Nov 15 2023
Comments