cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A088878 Prime numbers p such that 3p - 2 is a prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 37, 43, 47, 53, 61, 67, 71, 103, 113, 127, 137, 163, 167, 181, 191, 193, 211, 251, 257, 263, 271, 277, 293, 307, 313, 331, 337, 347, 373, 401, 431, 433, 443, 461, 467, 487, 491, 523, 541, 557, 587, 593, 601, 673, 677, 727, 751, 757, 761
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 27 2003

Keywords

Comments

Indices of semiprime octagonal numbers. - Jonathan Vos Post, Feb 16 2006
Daughter primes of order 1. - Artur Jasinski, Dec 12 2007
A010051(3*a(n)-2) = 1. - Reinhard Zumkeller, Jul 02 2015

Examples

			For p = 3, 3p - 2 = 7;
for p = 523, 3p - 2 = 1567.
		

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Haskell
    a088878 n = a088878_list !! (n-1)
    a088878_list = filter ((== 1) . a010051' . subtract 2 . (* 3)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [ p: p in PrimesUpTo(770) | IsPrime(3*p-2) ]; // Klaus Brockhaus, Dec 21 2008
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[3*p-2],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
    Select[Prime[Range[150]],PrimeQ[3#-2]&] (* Harvey P. Dale, Feb 27 2024 *)
  • PARI
    list(lim)=select(p->isprime(3*p-2),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    

Extensions

Corrected and extended by Ray Chandler, Dec 27 2003
Entry revised by N. J. A. Sloane, Nov 28 2006, Jul 08 2010

A063908 Numbers k such that k and 2*k-3 are primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 53, 67, 71, 83, 97, 101, 107, 113, 127, 137, 157, 167, 181, 191, 193, 211, 223, 233, 241, 251, 263, 283, 311, 317, 331, 347, 373, 421, 431, 433, 443, 457, 461, 487, 521, 547, 563, 577, 587, 613, 617, 631, 641, 643, 647
Offset: 1

Views

Author

N. J. A. Sloane, Aug 31 2001

Keywords

Comments

If p is in this sequence then the products of positive powers of 3, p and 2p-3 are entries in A086486. - Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 23 2003
Median prime of AP3's starting at 3, i.e., triples of primes (3,p,q) in arithmetic progression. - M. F. Hasler, Sep 24 2009
a(n) = sum of the coprimes(p) mod (p+1). - J. M. Bergot, Nov 13 2014
A010051(2*a(n)-3) = 1. - Reinhard Zumkeller, Jul 02 2015
A098090 INTERSECT A000040. - R. J. Mathar, Mar 23 2017

Examples

			From _K. D. Bajpai_, Nov 29 2019: (Start)
a(5) = 13 is prime and 2*13 - 3 = 23 is also prime.
a(6) = 17 is prime and 2*17 - 3 = 31 is also prime.
(End)
		

Crossrefs

Programs

  • Haskell
    a063908 n = a063908_list !! (n-1)
    a063908_list = filter
       ((== 1) . a010051' . (subtract 3) . (* 2)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [n : n in [0..700] | IsPrime(n) and IsPrime(2*n-3)]; // Vincenzo Librandi, Nov 14 2014
    
  • Maple
    select(k -> andmap(isprime, [k, 2*k-3]), [seq(k, k=1.. 10^4)]); # K. D. Bajpai, Nov 29 2019
  • Mathematica
    Select[Prime[Range[6! ]],PrimeQ[2*#-3]&] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
  • PARI
    { n=0; p=1; for (m=1, 10^9, p=nextprime(p+1); if (isprime(2*p - 3), write("b063908.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 02 2009
    
  • PARI
    forprime( p=1,default(primelimit), isprime(2*p-3) && print1(p",")) \\ M. F. Hasler, Sep 24 2009
    

Formula

a(n) = A241817(n)/2. - Wesley Ivan Hurt, Apr 08 2018

A172287 Primes p such that exactly one of 2p-3 and 3p-2 is prime.

Original entry on oeis.org

17, 31, 41, 47, 61, 83, 97, 101, 103, 107, 157, 163, 223, 233, 241, 257, 271, 277, 283, 293, 307, 311, 313, 317, 337, 401, 421, 457, 467, 491, 521, 523, 541, 547, 557, 563, 577, 593, 601, 613, 617, 631, 641, 643, 647, 653, 661, 673, 677, 701, 743, 761, 773
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 30 2010

Keywords

Comments

A010051(2*a(n)+3) + A010051(3*a(n)+2) = 1; each term is either a term of A063908 or of A088878. - Reinhard Zumkeller, Jul 02 2015
No terms end in 9. Dickson's conjecture implies that there are infinitely many terms. - Robert Israel, Jul 02 2015

Examples

			a(1)=17 because 2*17-3=31 is prime and 3*17-2=49 is nonprime.
19 is not a term because neither 2*19-3=35 nor 3*19-2=55 is prime;
23 is not a term because both 2*23-3=43 and 3*23-2=67 are prime.
		

Crossrefs

Programs

  • Haskell
    a172287 n = a172287_list !! (n-1)
    a172287_list = filter
       (\p -> a010051' (2 * p - 3) + a010051' (3 * p - 2) == 1) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Maple
    A172287:=n->`if`(isprime(n) and (isprime(2*n-3) xor isprime(3*n-2)), n, NULL): seq(A172287(n), n=1..1000); # Wesley Ivan Hurt, Jun 23 2015
  • Mathematica
    Select[Prime@ Range@ 150, Xor[PrimeQ[2 # - 3], PrimeQ[3 # - 2]] &] (* Michael De Vlieger, Jul 01 2015 *)

Extensions

Extended by Charles R Greathouse IV, Mar 25 2010

A259758 Squarefree semiprimes of the form (2*p - 3) * (3*p - 2), p prime.

Original entry on oeis.org

21, 91, 209, 589, 851, 2881, 7739, 10541, 16171, 26069, 29329, 75151, 95129, 110839, 165169, 194219, 216409, 220991, 264389, 374749, 411601, 653069, 717949, 829931, 1108969, 1119311, 1171741, 1269139, 1416689, 2059789, 3161729, 3374249, 3428459, 4924109
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2015

Keywords

Comments

a(n) = (2*A259730(n) - 3) * (3*A259730(n) - 2);
3431 = A033569(24) = (2*25-3)*(3*25-2) = 47*73 = A006881(946) is the smallest term in the intersection of A006881 and A033569 not belonging to this sequence.

Examples

			.    n | p = A259730(n) | 2*p - 3 | 3*p - 2 |   a(n)
.  ----+----------------+---------+---------+--------
.    1 |              3 |       3 |       7 |     21
.    2 |              5 |       7 |      13 |     91
.    3 |              7 |      11 |      19 |    209
.    4 |             11 |      19 |      31 |    589
.    5 |             13 |      23 |      37 |    851
.    6 |             23 |      43 |      67 |   2881
.    7 |             37 |      71 |     109 |   7739
.    8 |             43 |      83 |     127 |  10541
.    9 |             53 |     103 |     157 |  16171
.   10 |             67 |     131 |     199 |  26069
.   11 |             71 |     139 |     211 |  29329
.   12 |            113 |     223 |     337 |  75151  .
		

Crossrefs

Cf. A259730, subsequence of A006881, subsequence of A033569.

Programs

  • Haskell
    a259758 n = (2 * p - 3) * (3 * p - 2)  where p = a259730 n
  • Mathematica
    Select[Table[(2p-3)(3p-2),{p,Prime[Range[200]]}],PrimeOmega[#]==2&&SquareFreeQ[ #]&] (* Harvey P. Dale, Jul 20 2022 *)

Formula

a(n) = 6*A259730(n)^2 - 13*A259730(n) + 6.

A290164 Primes p such that both 4*p - 3 and 3*p - 4 are prime.

Original entry on oeis.org

2, 5, 11, 19, 29, 59, 61, 79, 89, 131, 149, 151, 191, 389, 431, 479, 499, 521, 541, 571, 631, 659, 701, 739, 919, 941, 971, 1069, 1181, 1279, 1289, 1361, 1381, 1451, 1471, 1489, 1669, 1949, 2069, 2089, 2131, 2549, 2609, 2749, 2791, 3011, 3109, 3181, 3251, 3361
Offset: 1

Views

Author

David James Sycamore, Jul 22 2017

Keywords

Comments

For n >= 3, all terms end in 1 or 9. - Robert Israel, Jul 24 2017

Crossrefs

Cf. A259730, A290163 (a subsequence).

Programs

  • Maple
    select(p -> isprime(p) and isprime(4*p-3) and isprime(3*p-4), [2,seq(i,i=3..10000,2)]); # Robert Israel, Jul 24 2017
  • Mathematica
    Select[Prime@ Range@ 500, Times @@ Boole@ Map[PrimeQ, {4 # - 3, 3 # - 4}] > 0 &] (* Michael De Vlieger, Jul 23 2017 *)
  • PARI
    forprime(p=2, 10000, if (isprime(3*p-4) && isprime(4*p-3), print1(p, ", "))) \\ Michel Marcus, Jul 23 2017

Extensions

More terms from Michel Marcus, Jul 23 2017

A290163 Primes p such that A288814(4*p) - A288814(3*p) = 7.

Original entry on oeis.org

2, 19, 29, 59, 79, 89, 131, 149, 151, 389, 479, 499, 521, 571, 631, 659, 701, 739, 919, 941, 971, 1069, 1279, 1289, 1361, 1381, 1451, 1471, 1489, 1669, 1949, 2069, 2089, 2131, 2549, 2609, 2749, 2791, 3011, 3109, 3181, 3251, 3361, 3389, 3539, 3581, 3659, 4049, 4091, 4139
Offset: 1

Views

Author

David James Sycamore, Jul 22 2017

Keywords

Comments

Proper subset of A290164.
Terms of A290164 not in this sequence include 5, 11, 61, 191, 431, 541, 1181, 3571, ... corresponding to primes p such that A(4*p) - A(3*p) = A(3*p) - 1, where A=A288814. Examples: A(4*5) - A(3*5) = 51 - 26 = 25; A(4*541) - A(3*541) = 6483 - 3242 = 3241.

Examples

			A288814(4*2) - A288814(3*2) = 15 - 8 = 7, therefore prime 2 is in the sequence;
A288814(4*19) - A288814(3*19) = 219 - 212 = 7, therefore prime 19 is a term.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[Boole[CompositeQ@ #] Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[#]] &, 10^5]}, Select[Prime@ Range[600], Function[p, FirstPosition[s, ?(# == 4 p &)][[1]] - FirstPosition[s, ?(# == 3 p &)][[1]] == 7]]] (* Michael De Vlieger, Jul 23 2017 *)

Extensions

More terms from Altug Alkan, Jul 23 2017
Edited by Robert Israel, Jul 24 2017

A289556 Primes p such that both 5*p - 4 and 4*p - 5 are prime.

Original entry on oeis.org

3, 7, 13, 43, 67, 109, 127, 151, 163, 211, 277, 307, 373, 457, 463, 601, 613, 673, 727, 853, 919, 967, 1021, 1117, 1171, 1231, 1399, 1471, 1483, 1747, 1789, 1933, 2029, 2251, 2311, 2389, 2503, 2521, 2557, 2659, 2851, 2857, 3019, 3067, 3121, 3229, 3583, 3613, 3637, 3691, 3697
Offset: 1

Views

Author

David James Sycamore, Aug 02 2017

Keywords

Comments

The terms of this sequence belong to two disjoint subsequences, namely those for which |A(5*p) - A(4*p)| = 9; (3,7,13,43,67,127,163,211,277,307,457,...), and those for which 5*A(4*p) - 3*A(5*p) = 3, (109,151,373,673,919,...), where A = A288814.
Note: A288814(n) = A056240(n) for all composite n.

Examples

			P=7: 5*7 - 4 = 31, 4*7 - 5 = 23, both prime so 7 is in this sequence, and belongs to the subsequence of terms satisfying A(4*p) - A(3*p) = 9.
P=109: 5*109 - 4 = 541, 4*109 - 5 = 431, both prime so 109 is in this sequence, and belongs to the subsequence of terms satisfying 5*A(4*p) - 3*A(5*p) = 3.
		

Crossrefs

Intersection of A136051 and A156300. - Michel Marcus, Aug 04 2017

Programs

  • Mathematica
    Select[Prime@ Range@ 516, Times @@ Boole@ Map[PrimeQ, {5 # - 4, 4 # - 5}] > 0 &] (* Michael De Vlieger, Aug 02 2017 *)

Extensions

More terms from Altug Alkan, Aug 02 2017
Showing 1-7 of 7 results.