cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A091179 A088878 indexed by A000040.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 12, 14, 15, 16, 18, 19, 20, 27, 30, 31, 33, 38, 39, 42, 43, 44, 47, 54, 55, 56, 58, 59, 62, 63, 65, 67, 68, 69, 74, 79, 83, 84, 86, 89, 91, 93, 94, 99, 100, 102, 107, 108, 110, 122, 123, 129, 133, 134, 135, 139, 143, 147, 153, 154, 155, 156, 162, 167
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Crossrefs

Programs

  • Maple
    select(n -> isprime(3*ithprime(n)-2), [$1..1000]); # Robert Israel, Mar 04 2016
  • Mathematica
    PrimePi@ Select[Prime@ Range@ 167, PrimeQ[3 # - 2] &] (* Michael De Vlieger, Mar 04 2016 *)

Formula

a(n)=k such that A000040(k) = A088878(n).

Extensions

Offset corrected by Michael De Vlieger, Mar 04 2016

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A091180 Primes of the form 3*p - 2 such that p is a prime.

Original entry on oeis.org

7, 13, 19, 31, 37, 67, 109, 127, 139, 157, 181, 199, 211, 307, 337, 379, 409, 487, 499, 541, 571, 577, 631, 751, 769, 787, 811, 829, 877, 919, 937, 991, 1009, 1039, 1117, 1201, 1291, 1297, 1327, 1381, 1399, 1459, 1471, 1567, 1621, 1669, 1759, 1777, 1801
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Comments

Mother primes of order 1. - Artur Jasinski, Dec 12 2007

Examples

			From _K. D. Bajpai_, Jun 20 2015: (Start)
a(4) = 31: 3*11 - 2 = 31; A088878(4) = 11.
a(6) = 67: 3*23 - 2 = 67; A088878(6) = 23.
(End)
		

Crossrefs

Programs

  • Magma
    [ k: p in PrimesUpTo(1000) | IsPrime(k)  where k is (3*p-2) ]; // K. D. Bajpai, Jun 20 2015
  • Maple
    A091180:= n-> (3*ithprime(n)-2): select(isprime,[seq((A091180(n), n=1..100))]);  # K. D. Bajpai, Jun 20 2015
  • Mathematica
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
    Select[Table[3*Prime[n] - 2,{n, 1000}], PrimeQ] (* K. D. Bajpai, Jun 20 2015 *)
  • PARI
    forprime(p =  1, 1000, k =( 3*p -2); if ( isprime(k), print1(k, ", "))); \\  K. D. Bajpai, Jun 20 2015
    

Formula

a(n) = 3*A088878(n)-2.

Extensions

Name clarified by Jinyuan Wang, Aug 06 2021

A063908 Numbers k such that k and 2*k-3 are primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 53, 67, 71, 83, 97, 101, 107, 113, 127, 137, 157, 167, 181, 191, 193, 211, 223, 233, 241, 251, 263, 283, 311, 317, 331, 347, 373, 421, 431, 433, 443, 457, 461, 487, 521, 547, 563, 577, 587, 613, 617, 631, 641, 643, 647
Offset: 1

Views

Author

N. J. A. Sloane, Aug 31 2001

Keywords

Comments

If p is in this sequence then the products of positive powers of 3, p and 2p-3 are entries in A086486. - Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 23 2003
Median prime of AP3's starting at 3, i.e., triples of primes (3,p,q) in arithmetic progression. - M. F. Hasler, Sep 24 2009
a(n) = sum of the coprimes(p) mod (p+1). - J. M. Bergot, Nov 13 2014
A010051(2*a(n)-3) = 1. - Reinhard Zumkeller, Jul 02 2015
A098090 INTERSECT A000040. - R. J. Mathar, Mar 23 2017

Examples

			From _K. D. Bajpai_, Nov 29 2019: (Start)
a(5) = 13 is prime and 2*13 - 3 = 23 is also prime.
a(6) = 17 is prime and 2*17 - 3 = 31 is also prime.
(End)
		

Crossrefs

Programs

  • Haskell
    a063908 n = a063908_list !! (n-1)
    a063908_list = filter
       ((== 1) . a010051' . (subtract 3) . (* 2)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [n : n in [0..700] | IsPrime(n) and IsPrime(2*n-3)]; // Vincenzo Librandi, Nov 14 2014
    
  • Maple
    select(k -> andmap(isprime, [k, 2*k-3]), [seq(k, k=1.. 10^4)]); # K. D. Bajpai, Nov 29 2019
  • Mathematica
    Select[Prime[Range[6! ]],PrimeQ[2*#-3]&] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
  • PARI
    { n=0; p=1; for (m=1, 10^9, p=nextprime(p+1); if (isprime(2*p - 3), write("b063908.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 02 2009
    
  • PARI
    forprime( p=1,default(primelimit), isprime(2*p-3) && print1(p",")) \\ M. F. Hasler, Sep 24 2009
    

Formula

a(n) = A241817(n)/2. - Wesley Ivan Hurt, Apr 08 2018

A125272 Primes p such that 3p - 2 and 3p + 2 are also primes.

Original entry on oeis.org

3, 5, 7, 13, 23, 37, 43, 103, 127, 163, 167, 257, 293, 313, 337, 433, 523, 757, 797, 887, 953, 1013, 1063, 1153, 1283, 1303, 1307, 1483, 1597, 1657, 1667, 1693, 1723, 1783, 1913, 2003, 2333, 2347, 2557, 2897, 2927, 3067, 3533, 3823, 3943, 4003, 4013, 4093
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Intersection of A023208 and A088878.
Cf. A125215.

Programs

  • Magma
    [p: p in PrimesUpTo(70000)| IsPrime(3*p-2)and IsPrime(3*p+2)] // Vincenzo Librandi, Jan 29 2011
    
  • Mathematica
    lst={}; Do[p=Prime[n]; If[PrimeQ[3*p-2]&&PrimeQ[3*p+2],AppendTo[lst,p]],{n,7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 18 2009 *)
    Select[Prime[Range[600]],AllTrue[3#+{2,-2},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 29 2021 *)
  • PARI
    is(n)=isprime(3*n-2)&&isprime(3*n+2)&&isprime(n) \\ Charles R Greathouse IV, Jul 02 2013

Formula

a(n) = A125215(n)/3.

A136017 a(n) = 36n^2 - 1.

Original entry on oeis.org

35, 143, 323, 575, 899, 1295, 1763, 2303, 2915, 3599, 4355, 5183, 6083, 7055, 8099, 9215, 10403, 11663, 12995, 14399, 15875, 17423, 19043, 20735, 22499, 24335, 26243, 28223, 30275, 32399, 34595, 36863, 39203, 41615, 44099, 46655, 49283, 51983
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Comments

The least common multiple of 6*n+1 and 6*n-1. - Colin Barker, Feb 11 2017

Crossrefs

Programs

Formula

O.g.f.: x*(-35-38*x+x^2)/(-1+x)^3 = 1-35/(-1+x)-108/(-1+x)^2-72/(-1+x)^3. - R. J. Mathar, Dec 12 2007
a(n) = A061037(12n+10)=(6n-1)*(6n+1). - Paul Curtz, Sep 25 2008
Sum_{k>=1} (-1)^(k+1)/a(k) = (Pi-3)/6. - Jaume Oliver Lafont, Oct 20 2009
E.g.f.: 1 + (36 x^2 + 26 x - 1) exp(x). - Robert Israel, Jun 09 2016
Product_{n >= 1} A016910(n) / a(n) = Pi / 3. - Fred Daniel Kline, Jun 09 2016
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(3)*Pi/12. - Amiram Eldar, Jun 27 2020

A136061 Primes p such that (p+4)/5 is also prime.

Original entry on oeis.org

11, 31, 61, 151, 181, 211, 331, 541, 631, 691, 751, 811, 991, 1051, 1201, 1381, 1531, 1741, 1831, 1861, 2161, 2281, 2311, 2731, 2851, 3001, 3061, 3301, 3361, 3541, 3631, 3691, 3931, 4051, 4111, 4261, 4591, 4831, 4951, 5101, 5431, 5581, 5641, 5851, 6151
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Equivalently: Mother primes of order 2. For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180.

Crossrefs

Programs

  • GAP
    A136061:=Filtered(Filtered([1..10^6],IsPrime),p->IsPrime((p+4)/5)); # Muniru A Asiru, Oct 10 2017
  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
    Select[Prime[Range[400]], PrimeQ[(# + 4) / 5]&] (* Vincenzo Librandi, Apr 14 2013 *)
  • PARI
    {forprime(p=1,1e4/*default(primelimit)*/, p%5-1 & next; isprime(p\5+1) & print1(p","))}  \\ M. F. Hasler, Feb 26 2012
    

A136066 Mother primes of order 7.

Original entry on oeis.org

31, 61, 151, 181, 241, 271, 331, 421, 541, 601, 631, 691, 991, 1051, 1171, 1231, 1321, 1531, 1621, 1951, 2221, 2251, 2341, 2671, 2851, 2971, 3331, 3391, 3571, 3931, 4021, 4051, 4201, 4231, 4591, 4651, 4951, 5281, 5581, 5821, 6121, 6271, 6301, 6451, 6481
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136051 Primes p such that 5*p-4 is also prime.

Original entry on oeis.org

3, 7, 13, 31, 37, 43, 67, 109, 127, 139, 151, 163, 199, 211, 241, 277, 307, 349, 367, 373, 433, 457, 463, 547, 571, 601, 613, 661, 673, 709, 727, 739, 787, 811, 823, 853, 919, 967, 991, 1021, 1087, 1117, 1129, 1171, 1231, 1291, 1297, 1399, 1471, 1483, 1549
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Previous name: Daughter primes of order 2.
For daughter primes of order 1 see A088878. For smallest daughter primes of order n see A136019 (also definition).

Crossrefs

Programs

  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a
    (* Second program: *)
    Select[Prime@ Range@ 250, PrimeQ[5 # - 4] &] (* Michael De Vlieger, Aug 04 2017 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(5*p-4), print1(p, ", ")))

Extensions

New name from Michel Marcus, Aug 04 2017

A136052 Daughter primes of order 3.

Original entry on oeis.org

5, 7, 11, 17, 19, 29, 31, 41, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 131, 137, 139, 151, 157, 167, 197, 211, 227, 229, 239, 269, 277, 307, 317, 331, 347, 349, 379, 401, 409, 419, 431, 439, 449, 461, 479, 509, 547, 601, 607, 619, 641, 647, 661, 677, 691
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For smallest daughter primes of order n see A136019 (also definition)

Crossrefs

Programs

  • Mathematica
    n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a
Showing 1-10 of 44 results. Next