cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A091181 A091180 indexed by A000040.

Original entry on oeis.org

4, 6, 8, 11, 12, 19, 29, 31, 34, 37, 42, 46, 47, 63, 68, 75, 80, 93, 95, 100, 105, 106, 115, 133, 136, 138, 141, 145, 151, 157, 159, 167, 169, 175, 187, 197, 210, 211, 217, 221, 222, 232, 233, 247, 257, 263, 274, 275, 279, 306, 308, 327, 335, 337, 339, 355, 365
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Crossrefs

Formula

a(n) = k such that A000040(k) = A091180(n).
a(n) = A000720(A091180(n)). - Michel Marcus, Aug 06 2021

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 06 2021

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A088878 Prime numbers p such that 3p - 2 is a prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 37, 43, 47, 53, 61, 67, 71, 103, 113, 127, 137, 163, 167, 181, 191, 193, 211, 251, 257, 263, 271, 277, 293, 307, 313, 331, 337, 347, 373, 401, 431, 433, 443, 461, 467, 487, 491, 523, 541, 557, 587, 593, 601, 673, 677, 727, 751, 757, 761
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 27 2003

Keywords

Comments

Indices of semiprime octagonal numbers. - Jonathan Vos Post, Feb 16 2006
Daughter primes of order 1. - Artur Jasinski, Dec 12 2007
A010051(3*a(n)-2) = 1. - Reinhard Zumkeller, Jul 02 2015

Examples

			For p = 3, 3p - 2 = 7;
for p = 523, 3p - 2 = 1567.
		

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Haskell
    a088878 n = a088878_list !! (n-1)
    a088878_list = filter ((== 1) . a010051' . subtract 2 . (* 3)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [ p: p in PrimesUpTo(770) | IsPrime(3*p-2) ]; // Klaus Brockhaus, Dec 21 2008
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[3*p-2],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
    Select[Prime[Range[150]],PrimeQ[3#-2]&] (* Harvey P. Dale, Feb 27 2024 *)
  • PARI
    list(lim)=select(p->isprime(3*p-2),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    

Extensions

Corrected and extended by Ray Chandler, Dec 27 2003
Entry revised by N. J. A. Sloane, Nov 28 2006, Jul 08 2010

A094524 Primes of form 3*prime(m) + 2.

Original entry on oeis.org

11, 17, 23, 41, 53, 59, 71, 89, 113, 131, 179, 239, 251, 269, 293, 311, 383, 419, 449, 491, 503, 521, 593, 599, 683, 701, 719, 773, 809, 881, 941, 953, 1013, 1049, 1061, 1103, 1151, 1193, 1229, 1259, 1301, 1319, 1373, 1439, 1499, 1511, 1571, 1709, 1733
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2004

Keywords

Examples

			a(7) = 3*23 + 2 = 71.
		

Crossrefs

Programs

Formula

a(n) = 3*A023208(n) + 2.

A136061 Primes p such that (p+4)/5 is also prime.

Original entry on oeis.org

11, 31, 61, 151, 181, 211, 331, 541, 631, 691, 751, 811, 991, 1051, 1201, 1381, 1531, 1741, 1831, 1861, 2161, 2281, 2311, 2731, 2851, 3001, 3061, 3301, 3361, 3541, 3631, 3691, 3931, 4051, 4111, 4261, 4591, 4831, 4951, 5101, 5431, 5581, 5641, 5851, 6151
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Equivalently: Mother primes of order 2. For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180.

Crossrefs

Programs

  • GAP
    A136061:=Filtered(Filtered([1..10^6],IsPrime),p->IsPrime((p+4)/5)); # Muniru A Asiru, Oct 10 2017
  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
    Select[Prime[Range[400]], PrimeQ[(# + 4) / 5]&] (* Vincenzo Librandi, Apr 14 2013 *)
  • PARI
    {forprime(p=1,1e4/*default(primelimit)*/, p%5-1 & next; isprime(p\5+1) & print1(p","))}  \\ M. F. Hasler, Feb 26 2012
    

A136066 Mother primes of order 7.

Original entry on oeis.org

31, 61, 151, 181, 241, 271, 331, 421, 541, 601, 631, 691, 991, 1051, 1171, 1231, 1321, 1531, 1621, 1951, 2221, 2251, 2341, 2671, 2851, 2971, 3331, 3391, 3571, 3931, 4021, 4051, 4201, 4231, 4591, 4651, 4951, 5281, 5581, 5821, 6121, 6271, 6301, 6451, 6481
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A163573 Primes p such that (p+1)/2, (p+2)/3 and (p+3)/4 are also primes.

Original entry on oeis.org

12721, 16921, 19441, 24481, 49681, 61561, 104161, 229321, 255361, 259681, 266401, 291721, 298201, 311041, 331921, 419401, 423481, 436801, 446881, 471241, 525241, 532801, 539401, 581521, 600601, 663601, 704161, 709921, 783721, 867001, 904801
Offset: 1

Views

Author

Keywords

Comments

Are all terms == 1 (mod 10)?
Subsequence of A005383, of A091180 and of A036570. - R. J. Mathar, Aug 01 2009
Since (p+2)/3 and (p+3)/4 must be integer, the Chinese remainder theorem shows that all terms are == 1 (mod 12). - R. J. Mathar, Aug 01 2009
All terms are of the form 120k+1: a(n)=120*A163625(n)+1. - Zak Seidov, Aug 01 2009
Each term is congruent to 1 mod 120, so the last digits are always '1': For all four values to be integers it must be that p = 1 (mod 12). As p is prime, it must be that p = 1, 13, 37, 49, 61, 73, 97, or 109 (mod 120). In all but the first case either (p+3)/4 is even or one of the three expressions gives a value divisible by 5 (or both, and possibly the same expression). - Rick L. Shepherd, Aug 01 2009
{6*a(n)}A050498.%20Proof:%20with%20p%20=%20a(n)%20the%20arithmetic%20progression%20with%20four%20terms%20of%20difference%206%20and%20constant%20value%20of%20Euler's%20phi,%20namely%202*(p-1),%20is%206*(p,%202*(p+1)/2,%203*(p+2)/3,%204*(p+3)/4).%20Use%20phi(n,%20prime)%20=%20phi(n)*(prime-1)%20if%20gcd(n,%20prime)%20=%201.%20Here%20n%20=%206,%2012,%2018,%2024%20and%20prime%20%3E%203%20for%20p%20%3E=%20a(1).%20Thanks%20to%20_Hugo%20Pfoertner">{n >= 1} is a subsequence of A050498. Proof: with p = a(n) the arithmetic progression with four terms of difference 6 and constant value of Euler's phi, namely 2*(p-1), is 6*(p, 2*(p+1)/2, 3*(p+2)/3, 4*(p+3)/4). Use phi(n, prime) = phi(n)*(prime-1) if gcd(n, prime) = 1. Here n = 6, 12, 18, 24 and prime > 3 for p >= a(1). Thanks to _Hugo Pfoertner for a link to the present sequence in connection with A339883. - Wolfdieter Lang, Jan 11 2021

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(6, 1200000) | IsPrime((p+1) div 2) and IsPrime((p+2) div 3) and IsPrime((p+3) div 4)]; // Vincenzo Librandi, Apr 09 2013
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p+1)/2]&&PrimeQ[(p+2)/3]&&PrimeQ[(p+3)/ 4],AppendTo[lst,p]],{n,2*9!}];lst
  • PARI
    is(n)=n%120==1 && isprime(n) && isprime(n\2+1) && isprime(n\3+1) && isprime(n\4+1) \\ Charles R Greathouse IV, Nov 30 2016
    
  • Python
    from sympy import prime, isprime
    A163573_list = [4*q-3 for q in (prime(i) for i in range(1,10000)) if isprime(4*q-3) and isprime(2*q-1) and (not (4*q-1) % 3) and isprime((4*q-1)//3)] # Chai Wah Wu, Nov 30 2016

Extensions

Slightly edited by R. J. Mathar, Aug 01 2009

A136051 Primes p such that 5*p-4 is also prime.

Original entry on oeis.org

3, 7, 13, 31, 37, 43, 67, 109, 127, 139, 151, 163, 199, 211, 241, 277, 307, 349, 367, 373, 433, 457, 463, 547, 571, 601, 613, 661, 673, 709, 727, 739, 787, 811, 823, 853, 919, 967, 991, 1021, 1087, 1117, 1129, 1171, 1231, 1291, 1297, 1399, 1471, 1483, 1549
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Previous name: Daughter primes of order 2.
For daughter primes of order 1 see A088878. For smallest daughter primes of order n see A136019 (also definition).

Crossrefs

Programs

  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a
    (* Second program: *)
    Select[Prime@ Range@ 250, PrimeQ[5 # - 4] &] (* Michael De Vlieger, Aug 04 2017 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(5*p-4), print1(p, ", ")))

Extensions

New name from Michel Marcus, Aug 04 2017

A136052 Daughter primes of order 3.

Original entry on oeis.org

5, 7, 11, 17, 19, 29, 31, 41, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 131, 137, 139, 151, 157, 167, 197, 211, 227, 229, 239, 269, 277, 307, 317, 331, 347, 349, 379, 401, 409, 419, 431, 439, 449, 461, 479, 509, 547, 601, 607, 619, 641, 647, 661, 677, 691
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For smallest daughter primes of order n see A136019 (also definition)

Crossrefs

Programs

  • Mathematica
    n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a

A136062 Mother primes of order 3.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 281, 421, 463, 491, 547, 617, 673, 701, 743, 757, 883, 911, 953, 967, 1051, 1093, 1163, 1373, 1471, 1583, 1597, 1667, 1877, 1933, 2143, 2213, 2311, 2423, 2437, 2647, 2801, 2857, 2927, 3011, 3067, 3137, 3221, 3347, 3557
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061.

Crossrefs

Programs

  • Mathematica
    n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
Showing 1-10 of 31 results. Next