A163625
Numbers k such that 120*k + 1 is a term in A163573.
Original entry on oeis.org
106, 141, 162, 204, 414, 513, 868, 1911, 2128, 2164, 2220, 2431, 2485, 2592, 2766, 3495, 3529, 3640, 3724, 3927, 4377, 4440, 4495, 4846, 5005, 5530, 5868, 5916, 6531, 7225, 7540, 7567, 7653, 9283, 9612, 9633, 10017, 10159, 10830, 11152, 11538, 12363
Offset: 1
a(1)=106 because 120*106 + 1 = 12721 = A163573(1).
-
A163573 = {}; Do[p = Prime[n]; If[PrimeQ[(p + 1)/2] && PrimeQ[(p + 2)/3] && PrimeQ[(p + 3)/4], AppendTo[A163573, p]], {n, 2*9!}]; A163573;
Table[(A163573[[n]] - 1)/120, {n, 1, 50}] (* G. C. Greubel, Jul 30 2017 *)
A036570
Primes p such that (p+1)/2 and (p+2)/3 are also primes.
Original entry on oeis.org
13, 37, 157, 541, 877, 1201, 1381, 1621, 2017, 2557, 2857, 3061, 4357, 4441, 5077, 5581, 5701, 6337, 6637, 6661, 6997, 7417, 8221, 9181, 9661, 9901, 10837, 11497, 12457, 12601, 12721, 12757, 13681, 14437, 15241, 16921, 17077, 18217
Offset: 1
A350686
Numbers k such that tau(k) + tau(k+1) + tau(k+2) + tau(k+3) = 16, where tau is the number of divisors function A000005.
Original entry on oeis.org
12, 17, 19, 20, 26, 31, 211, 716, 1226, 1436, 2306, 2731, 2971, 5636, 8011, 12146, 12721, 16921, 18266, 19441, 24481, 24691, 25796, 28316, 30026, 34651, 35876, 37171, 45986, 49681, 51691, 56036, 58676, 61561, 67531, 77276, 98731, 98996, 104161, 104756, 108571
Offset: 1
The table below includes all terms k such that at least one of the four numbers k, k+1, k+2, k+3 has no prime factor > 5; each such number appears in parentheses in the columns under "factorization".
The table also includes, for each of the patterns (tau(k), tau(k+1), tau(k+2), tau(k+3)) that continues to appear for large k, the smallest such k for which each of the four numbers k, k+1, k+2, k+3 has a prime factor > 5. For each such quadruple, each of the four numbers is the product of a distinct multiplier m from 1..4 and a prime > 5, and each pattern corresponds to a distinct value of k mod 120: the tau patterns (2, 4, 4, 6), (2, 6, 4, 4), (4, 4, 6, 2), and (6, 4, 4, 2) correspond to k mod 120 = 1, 91, 26, and 116, respectively.
.
factorization as
# divisors of m*(prime > 5)
n a(n)=k k k+1 k+2 k+3 k k+1 k+2 k+3 k mod 120
- ------ --- --- --- --- --- --- --- --- ---------
1 12 6 2 4 4 (12) q 2r 3s 12
2 17 2 6 2 6 p (18) r 4s 17
3 19 2 6 4 4 p (20) 3r 2s 19
4 20 6 4 4 2 (20) 3q 2r s 20
5 26 4 4 6 2 2p (27) 4r s 26
6 31 2 6 4 4 p (32) 3r 2s 31
7 211 2 6 4 4 p 4q 3r 2s 91
8 716 6 4 2 2 4p 3q 2r s 116
9 1226 4 4 6 2 2p 3q 4r s 26
17 12721 2 4 4 6 p 2q 3r 4s 1
-
Position[Plus @@@ Partition[Array[DivisorSigma[0, #] & , 10^5], 4, 1], 16] // Flatten (* Amiram Eldar, Jan 12 2022 *)
-
isok(k) = numdiv(k) + numdiv(k+1) + numdiv(k+2) + numdiv(k+3) == 16; \\ Michel Marcus, Jan 12 2022
-
from sympy import divisor_count as tau
print([k for k in range( 1, 108572) if tau(k) + tau(k+1) + tau(k+2) + tau(k+3) == 16]) # Karl-Heinz Hofmann, Jan 12 2022
A050498
Arithmetic progressions of at least 4 terms with common difference 6 having the same value of phi(x) start at these numbers.
Original entry on oeis.org
72, 216, 76326, 101526, 116646, 146886, 298086, 369366, 624966, 1375926, 1532166, 1558086, 1598406, 1750326, 1789206, 1866246, 1991526, 2516406, 2540886, 2620806, 2681286, 2827446, 3151446, 3196806, 3236406, 3489126
Offset: 1
phi(72) = phi(78) = phi(84) = phi(90) = 24, so 72 is in the sequence.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 129.
A093553
a(n) is the smallest number m such that (m+k-1)/k is prime for k=1,2,...,n.
Original entry on oeis.org
2, 3, 13, 12721, 19441, 5516281, 5516281, 7321991041, 363500177041, 2394196081201, 3163427380990801, 22755817971366481, 3788978012188649281, 2918756139031688155201
Offset: 1
a(9)=363500177041 because all the nine numbers 363500177041,
(363500177041+1)/2, (363500177041+2)/3, (363500177041+3)/4,
(363500177041+4)/5, (363500177041+5)/6, (363500177041+6)/7,
(363500177041+7)/8 and (363500177041+8)/9 are primes and
363500177041 is the smallest number m such that (m+k-1)/k is prime for k=1,2,...,9.
A163623
Primes of the form 120*k + 1.
Original entry on oeis.org
241, 601, 1201, 1321, 1801, 2161, 2281, 2521, 3001, 3121, 3361, 4201, 4441, 4561, 4801, 5281, 5521, 5641, 5881, 6121, 6361, 6481, 6841, 6961, 7321, 7561, 7681, 8161, 8521, 8641, 8761, 9001, 9241, 9601, 9721, 10321, 11161, 12241, 12601, 12721, 12841
Offset: 1
-
[a: n in [0..250]|IsPrime(a) where a is 120*n+1] // Vincenzo Librandi, Dec 13 2010
-
Select[120*Range[120]+1,PrimeQ] (* Harvey P. Dale, Dec 05 2013 *)
-
lista(nn) = forprime(p=2, nn, if (!((p-1) % 120), print1(p, ", "))); \\ Michel Marcus, Jul 31 2017
A278585
Numbers k such that k+1 is a prime, k+2 is twice a prime, k+3 is three times a prime, and k+4 is four times a prime.
Original entry on oeis.org
12720, 16920, 19440, 24480, 49680, 61560, 104160, 229320, 255360, 259680, 266400, 291720, 298200, 311040, 331920, 419400, 423480, 436800, 446880, 471240, 525240, 532800, 539400, 581520, 600600, 663600, 704160, 709920, 783720, 867000, 904800, 908040, 918360
Offset: 1
-
Select[Range[920000],AllTrue[{#+1,(#+2)/2,(#+3)/3,(#+4)/4},PrimeQ]&] (* Harvey P. Dale, Aug 08 2021 *)
-
is(k)=k%120==0 && isprime(k+1) && isprime(k/2+1) && isprime(k/3+1) && isprime(k/4+1) \\ Charles R Greathouse IV, Dec 03 2016
-
from sympy import prime, isprime
A278585_list = [4*q-4 for q in (prime(i) for i in range(1,10000)) if isprime(4*q-3) and isprime(2*q-1) and (not (4*q-1) % 3) and isprime((4*q-1)//3)] # Chai Wah Wu, Nov 30 2016
A204592
Primes p such that (p+1)/2, (p+2)/3, (p+3)/4 and (p+4)/5 are also prime.
Original entry on oeis.org
19441, 266401, 423481, 539401, 600601, 663601, 908041, 1113961, 1338241, 1483561, 1657441, 1673401, 2578801, 3109681, 3150841, 3336601, 3613681, 4112761, 4160641, 4798081, 5114881, 5412961, 5516281, 5590201, 5839681, 6078361, 7660801, 8628481, 9362641, 9388801, 9584401, 9733081
Offset: 1
-
Select[Prime[Range[700000]],AllTrue[{(#+1)/2,(#+2)/3,(#+3)/4,(#+4)/5},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 05 2017 *)
-
{my(p=1); until(, isprime(p+=120) || next; for( j=2,5, isprime(p\j+1) || next(2)); print1(p","))}
-
forprime(p=2,1e7,if(p%120==1&&isprime((p+1)/2)&&isprime((p+2)/3)&& isprime((p+3)/4)&&isprime((p+4)/5),print1(p", "))) \\ Charles R Greathouse IV, Feb 26 2012
A247347
Primes p such that (p-k)/(k+1) is also prime for k = 1, 2, 3.
Original entry on oeis.org
11, 23, 719, 1439, 5639, 25799, 28319, 35879, 56039, 58679, 77279, 98999, 104759, 121559, 166919, 174599, 206639, 253679, 334319, 350159, 424079, 433439, 451679, 452759, 535919, 539159, 582719, 595319, 645839, 671039, 743279, 818999, 824039
Offset: 1
a(1) = 11 because 11, (11-1)/2 = 5, (11-2)/3 = 3 and (11-3)/4 = 2 are all primes.
-
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[(p-2)/3]&&PrimeQ[(p-3)/ 4], AppendTo[lst, p]], {n, 2*9!}]; lst
Select[Prime[Range[70000]],AllTrue[Table[(#-k)/(k+1),{k,3}],PrimeQ]&] (* Harvey P. Dale, Mar 09 2024 *)
-
isokp(v) = (type(v) == "t_INT") && isprime(v);
lista(nn) = {forprime(p=2, nn, if (isokp((p-1)/2) && isokp((p-2)/3) && isokp((p-3)/4), print1(p, ", ")););} \\ Michel Marcus, Sep 15 2014
A247348
Primes p such that (p-k)/(k+1) is also prime for k = 1, 2, 3, 4.
Original entry on oeis.org
174599, 334319, 535919, 671039, 907199, 2129399, 2298119, 3103799, 3369959, 4351199, 4598159, 5697599, 6184799, 6446159, 7224839, 7943759, 7957319, 8148839, 8346959, 8656919, 9096359, 9339119, 9463319, 9511199, 10514159, 10780559, 11816999, 12424319, 13781039
Offset: 1
-
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[(p-2)/3]&&PrimeQ[(p-3)/4]&&PrimeQ[(p-4)/5], AppendTo[lst, p]], {n, 2*9!}]; lst
Select[Prime[Range[900000]],AllTrue[Table[(#-k)/(k+1),{k,4}],PrimeQ]&] (* Harvey P. Dale, Jul 07 2025 *)
-
isokp(v) = (type(v) == "t_INT") && isprime(v);
lista(nn) = {forprime(p=2, nn, if (isokp((p-1)/2) && isokp((p-2)/3) && isokp((p-3)/4) && isokp((p-4)/5), print1(p, ", ")););} \\ Michel Marcus, Sep 15 2014
-
from _future_ import division
from sympy import prime, isprime
A247348_list = [p for p in (5*prime(n)+4 for n in range(1,10**6)) if not ((p-1) % 2 or (p-2) % 3 or (p-3) % 4) and isprime(p) and isprime((p-1)//2) and isprime((p-2)//3) and isprime((p-3)//4)] # Chai Wah Wu, Sep 18 2014
Showing 1-10 of 11 results.
Comments