A339883
Values of Euler's totient phi for A050498.
Original entry on oeis.org
24, 72, 25440, 33840, 38880, 48960, 99360, 123120, 208320, 458640, 510720, 519360, 532800, 583440, 596400, 622080, 663840, 838800, 846960, 873600, 893760, 942480, 1050480, 1065600, 1078800, 1163040, 1201200, 1327200, 1408320, 1419840, 1567440, 1734000, 1809600
Offset: 1
- David Wells, Curious and interesting numbers, Penguin Books, Revised edition, 1997 p. 112. [Gives under the number 72 the first three values of A050498 but with 76236 instead of 76326]
A163573
Primes p such that (p+1)/2, (p+2)/3 and (p+3)/4 are also primes.
Original entry on oeis.org
12721, 16921, 19441, 24481, 49681, 61561, 104161, 229321, 255361, 259681, 266401, 291721, 298201, 311041, 331921, 419401, 423481, 436801, 446881, 471241, 525241, 532801, 539401, 581521, 600601, 663601, 704161, 709921, 783721, 867001, 904801
Offset: 1
-
[p: p in PrimesInInterval(6, 1200000) | IsPrime((p+1) div 2) and IsPrime((p+2) div 3) and IsPrime((p+3) div 4)]; // Vincenzo Librandi, Apr 09 2013
-
lst={};Do[p=Prime[n];If[PrimeQ[(p+1)/2]&&PrimeQ[(p+2)/3]&&PrimeQ[(p+3)/ 4],AppendTo[lst,p]],{n,2*9!}];lst
-
is(n)=n%120==1 && isprime(n) && isprime(n\2+1) && isprime(n\3+1) && isprime(n\4+1) \\ Charles R Greathouse IV, Nov 30 2016
-
from sympy import prime, isprime
A163573_list = [4*q-3 for q in (prime(i) for i in range(1,10000)) if isprime(4*q-3) and isprime(2*q-1) and (not (4*q-1) % 3) and isprime((4*q-1)//3)] # Chai Wah Wu, Nov 30 2016
A039670
Sets of 4 numbers in arithmetic progression with common difference 6 and whose phi values are equal.
Original entry on oeis.org
72, 78, 84, 90, 216, 222, 228, 234, 76326, 76332, 76338, 76344, 101526, 101532, 101538, 101544, 116646, 116652, 116658, 116664, 146886, 146892, 146898, 146904, 298086, 298092, 298098, 298104, 369366, 369372, 369378, 369384, 624966, 624972
Offset: 1
- D. Wells, Curious and interesting numbers, Penguin Books, p. 112 (but beware errors).
-
with(numtheory):for n from 1 to 1000000 do if(phi(n)=phi(n+6) and phi(n+6)=phi(n+12) and phi(n+12)=phi(n+18)) then printf("%d, %d, %d, %d, ",n,n+6,n+12,n+18) fi od: # C. Ronaldo
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 29 2004
Showing 1-3 of 3 results.
Comments