A297150
Let b(k) denote A292081(k); the sequence lists numbers b(2n) where for all m > n, b(2m) > b(2n).
Original entry on oeis.org
35, 65, 95, 115, 155, 185, 215, 235, 265, 305, 335, 365, 395, 415, 445, 485, 515, 545, 565, 635, 655, 695, 755, 785, 815, 835, 865, 905, 965, 995, 1055, 1115, 1145, 1165, 1205, 1255, 1285, 1315, 1355, 1385, 1415, 1465, 1535, 1565, 1585, 1655, 1685, 1745, 1765, 1795, 1835, 1865, 1895, 1915, 1945, 1985
Offset: 1
a(1)=5*A049591(1)=5*7=35. Also A056240(A297925(1))=A056240(12)=35.
a(17)=5*A049591(17)=5*103=515. Also A056240(A297925(17))=A056240(108)=515.
-
[5*p: p in PrimesInInterval(3, 500) | not IsPrime(p + 2)]; // Vincenzo Librandi, Nov 12 2018
-
5 Select[Prime[Range[3, 100]], ! PrimeQ[(# + 2)] &] (* Vincenzo Librandi, Nov 12 2018 *)
A295185
a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3.
Original entry on oeis.org
6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669
Offset: 3
5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
Cf.
A000040,
A056240,
A288814,
A292081,
A289993,
A288313,
A297150,
A298615,
A298252,
A297925,
A298366,
A288189.
-
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
-
a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017
A289993
Primes p such that gpf(A288814(p)) < q, where q is greatest prime < p.
Original entry on oeis.org
211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4327, 4441, 4547, 4561, 4751, 4783, 4813, 4861, 5147, 5261, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6673, 6883, 6947, 7103, 7283, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 7993, 8419, 8443
Offset: 1
p=211 is a candidate for inclusion because p-q = 211-199 = 12, and b(12)=35 is a term in A292081. Since r=197 is the next prime below q, p-r = 14 and b(14) = 33 < 35, 211 is in the sequence, of type 2.
Conversely, p=809, which also has gap p-q = 12, is not in the sequence because the only number n > 12 for which b(n) < b(12)=35 is n=14, and p-14 = 795 is not prime. Therefore b(809) = 797*b(12) = 27895, and 809 is of type 1.
-
N:= 10^7: # to get terms before the first prime p>3 such that A288814(p) > N
Res:= NULL:
for x from 4 to N do
if isprime(x) then next fi;
F:= ifactors(x)[2];
p:= add(t[1]*t[2],t=F);
if not isprime(p) then next fi;
if not assigned(A288814[p]) then
A288814[p]:= x;
w:= max(seq(t[1],t=F));
if w < prevprime(p) then
Res:= Res, p
fi
fi
od:
pmax:= Res[-1]:
Primes:= select(isprime, [seq(i,i=5..pmax,2)]):
B:= remove(p -> assigned(A288814[p]), Primes):
sort(select(`<`,[Res], min(B))); # Robert Israel, Oct 19 2017
-
\\ See PARI link. - David A. Corneth, Mar 23 2018
A366841
Least positive integer whose odd prime factors sum to n, starting with n = 5.
Original entry on oeis.org
5, 9, 7, 15, 27, 21, 11, 35, 13, 33, 105, 39, 17, 65, 19, 51, 195, 57, 23, 95, 171, 69, 285, 115, 29, 161, 31, 87, 483, 93, 261, 155, 37, 217, 465, 111, 41, 185, 43, 123, 555, 129, 47, 215, 387, 141, 645, 235, 53, 329, 705, 159, 987, 265, 59, 371, 61, 177
Offset: 5
The terms together with their prime factors (which sum to n) begin:
5 = 5
9 = 3*3
7 = 7
15 = 3*5
27 = 3*3*3
21 = 3*7
11 = 11
35 = 5*7
13 = 13
33 = 3*11
105 = 3*5*7
Positions of first appearances in
A366840 (sum of odd prime factors).
A019507 lists numbers with (even factor sum) = (odd factor sum).
-
nn=1000;
w=Table[Total[Times@@@DeleteCases[If[n==1,{},FactorInteger[n]],{2,_}]],{n,nn}];
spnm[y_]:=Max@@Select[Union[y],Function[i,Union[Select[y,#<=i&]]==Range[i]]];
Table[Position[w,k][[1,1]],{k,5,spnm[Join[{1,2,3,4},Take[w,nn]/.(0->1)]]}]
-
f(n) = my(f=factor(n), j=if (n%2, 1, 2)); sum(i=j, #f~, f[i,1]*f[i,2]); \\ A366840
a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Nov 02 2023
Showing 1-4 of 4 results.
Comments