A067538 Number of partitions of n in which the number of parts divides n.
1, 2, 2, 4, 2, 8, 2, 11, 9, 14, 2, 46, 2, 24, 51, 66, 2, 126, 2, 202, 144, 69, 2, 632, 194, 116, 381, 756, 2, 1707, 2, 1417, 956, 316, 2043, 5295, 2, 511, 2293, 9151, 2, 10278, 2, 8409, 14671, 1280, 2, 36901, 8035, 21524, 11614, 25639, 2, 53138, 39810, 85004
Offset: 1
Examples
a(3)=2 because 3 is a prime; a(4)=4 because the five partitions of 4 are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}, and the number of parts in each of them divides 4 except for {2, 1, 1}. From _Gus Wiseman_, Sep 24 2019: (Start) The a(1) = 1 through a(8) = 11 partitions whose length divides their sum are the following. The Heinz numbers of these partitions are given by A316413. (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (11111) (33) (1111111) (44) (31) (42) (53) (1111) (51) (62) (222) (71) (321) (2222) (411) (3221) (111111) (3311) (4211) (5111) (11111111) (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..500 from Wouter Meeussen, n = 501..1000 from Alois P. Heinz, n = 1001..5000 from David A. Corneth)
- Eric W. Weisstein, Partition Function P
- Wikipedia, Integer Partition
Crossrefs
Programs
-
Mathematica
Do[p = IntegerPartitions[n]; l = Length[p]; c = 0; k = 1; While[k < l + 1, If[ IntegerQ[ n/Length[ p[[k]] ]], c++ ]; k++ ]; Print[c], {n, 1, 57}, All] p[n_,k_]:=p[n,k]=p[n-1,k-1]+p[n-k,k];p[n_,k_]:=0/;k>n;p[n_,n_]:=1;p[n_,0]:=0 Table[Plus @@ (p[n,# ]&/ @ Divisors[n]),{n,36}] (* Wouter Meeussen, Jun 07 2009 *) Table[Count[IntegerPartitions[n], q_ /; IntegerQ[Mean[q]]], {n, 50}] (*Clark Kimberling, Apr 23 2019 *)
-
PARI
a(n) = {my(nb = 0); forpart(p=n, if ((vecsum(Vec(p)) % #p) == 0, nb++);); nb;} \\ Michel Marcus, Jul 03 2018
-
Python
# uses A008284_T from sympy import divisors def A067538(n): return sum(A008284_T(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Sep 21 2023
Formula
a(p) = 2 for all primes p.
Extensions
Extended by Robert G. Wilson v, Oct 16 2002
Comments