cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A306017 Number of non-isomorphic multiset partitions of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 4, 6, 17, 14, 66, 30, 189, 222, 550, 112, 4696, 202, 5612, 30914, 63219, 594, 453125, 980, 3602695, 5914580, 1169348, 2510, 299083307, 232988061, 23248212, 2669116433, 14829762423, 9130, 170677509317, 13684, 1724710753084, 2199418340875, 14184712185, 38316098104262
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A multiset partition of weight n is a finite multiset of finite nonempty multisets whose sizes sum to n.
Number of distinct nonnegative integer matrices with all row sums equal and total sum n up to row and column permutations. - Andrew Howroyd, Sep 05 2018
From Gus Wiseman, Oct 11 2018: (Start)
Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears the same number of times. For n = 4, non-isomorphic representatives of these 17 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1},{2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{3,4}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{3},{4}}
(End)

Examples

			Non-isomorphic representatives of the a(4) = 17 multiset partitions:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1,1},{1,1}}
  {{1,1},{2,2}}
  {{1,2},{1,2}}
  {{1,2},{2,2}}
  {{1,2},{3,3}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
  {{1},{1},{1},{1}}
  {{1},{1},{2},{2}}
  {{1},{2},{2},{2}}
  {{1},{2},{3},{3}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 07 2019, after Andrew Howroyd *)
  • PARI
    \\ See A318951 for RowSumMats.
    a(n)={sumdiv(n,d,RowSumMats(n/d,n,d))} \\ Andrew Howroyd, Sep 05 2018

Formula

For p prime, a(p) = 2*A000041(p).
a(n) = Sum_{d|n} A331485(n/d, d). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018

A319056 Number of non-isomorphic multiset partitions of weight n in which (1) all parts have the same size and (2) each vertex appears the same number of times.

Original entry on oeis.org

1, 1, 4, 4, 10, 4, 21, 4, 26, 13, 28, 4, 128, 4, 39, 84, 150, 4, 358, 4, 956, 513, 86, 4, 12549, 1864, 134, 9582, 52366, 4, 301086, 4, 1042038, 407140, 336, 4690369, 61738312, 4, 532, 28011397, 2674943885, 4, 819150246, 4, 54904825372, 65666759973, 1303, 4, 4319823776760
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

a(p) = 4 for p prime. - Charlie Neder, Oct 15 2018

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 21 multiset partitions:
  (1)  (11)    (111)      (1111)        (11111)          (111111)
       (12)    (123)      (1122)        (12345)          (111222)
       (1)(1)  (1)(1)(1)  (1234)        (1)(1)(1)(1)(1)  (112233)
       (1)(2)  (1)(2)(3)  (11)(11)      (1)(2)(3)(4)(5)  (123456)
                          (11)(22)                       (111)(111)
                          (12)(12)                       (111)(222)
                          (12)(34)                       (112)(122)
                          (1)(1)(1)(1)                   (112)(233)
                          (1)(1)(2)(2)                   (123)(123)
                          (1)(2)(3)(4)                   (123)(456)
                                                         (11)(11)(11)
                                                         (11)(12)(22)
                                                         (11)(22)(33)
                                                         (11)(23)(23)
                                                         (12)(12)(12)
                                                         (12)(13)(23)
                                                         (12)(34)(56)
                                                         (1)(1)(1)(1)(1)(1)
                                                         (1)(1)(1)(2)(2)(2)
                                                         (1)(1)(2)(2)(3)(3)
                                                         (1)(2)(3)(4)(5)(6)
		

Crossrefs

Extensions

Terms a(12) and beyond from Andrew Howroyd, Feb 03 2022

A321455 Number of ways to factor n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n with equal block-sums.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The a(1440) = 6 factorizations into factors all having the same sum of prime indices:
  (10*12*12)
  (5*6*6*8)
  (9*10*16)
  (30*48)
  (36*40)
  (1440)
The a(900) = 5 multiset partitions with equal block-sums:
  {{1,1,2,2,3,3}}
  {{3,3},{1,1,2,2}}
  {{1,2,3},{1,2,3}}
  {{1,3},{1,3},{2,2}}
  {{3},{3},{1,2},{1,2}}
		

Crossrefs

Positions of 1's are A321453. Positions of terms > 1 are A321454.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A321455(n, m=n, facs=List([])) = if(1==n, all_have_same_sum_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A321455(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A319066 Number of partitions of integer partitions of n where all parts have the same length.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 26, 35, 59, 82, 128, 176, 273, 371, 553, 768, 1119, 1544, 2235, 3084, 4410, 6111, 8649, 11982, 16901, 23383, 32780, 45396, 63365, 87622, 121946, 168407, 233605, 322269, 445723, 613922, 847131, 1164819, 1603431, 2201370, 3023660, 4144124, 5680816
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Examples

			The a(1) = 1 through a(5) = 14 multiset partitions:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}
         {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}
                    {{1},{2}}      {{1,1,2}}          {{1,1,3}}
                    {{1},{1},{1}}  {{1},{3}}          {{1,2,2}}
                                   {{2},{2}}          {{1},{4}}
                                   {{1,1,1,1}}        {{2},{3}}
                                   {{1,1},{1,1}}      {{1,1,1,2}}
                                   {{1},{1},{2}}      {{1,1,1,1,1}}
                                   {{1},{1},{1},{1}}  {{1,1},{1,2}}
                                                      {{1},{1},{3}}
                                                      {{1},{2},{2}}
                                                      {{1},{1},{1},{2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Length/@#&]],{n,8}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=1/prod(k=1, n, 1 - x^k*y + O(x*x^n))); concat([1], sum(k=1, n, EulerT(Vec(polcoef(p, k, y), -n))))} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018

A321452 Number of integer partitions of n that can be partitioned into two or more blocks with equal sums.

Original entry on oeis.org

0, 0, 1, 1, 3, 1, 7, 1, 14, 10, 26, 1, 55, 1, 90, 68, 167, 1, 292, 1, 482, 345, 761, 1, 1291, 266, 1949, 1518, 3091, 1, 4793, 1, 7177, 5612, 10566, 2623, 16007, 1, 22912, 18992, 33619, 1, 48529, 1, 68758, 59187, 96571, 1, 137489, 11418, 189979, 167502, 264299
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

a(n) = 1 if and only if n is prime. - Chai Wah Wu, Nov 12 2018

Examples

			The a(2) = 1 through a(9) = 10 partitions:
  (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)        (333)
               (211)            (222)                (422)       (3321)
               (1111)           (321)                (431)       (32211)
                                (2211)               (2222)      (33111)
                                (3111)               (3221)      (222111)
                                (21111)              (3311)      (321111)
                                (111111)             (4211)      (2211111)
                                                     (22211)     (3111111)
                                                     (32111)     (21111111)
                                                     (41111)     (111111111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
The partition (32111) can be partitioned as ((13)(112)), and the blocks both sum to 4, so (32111) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[facs[Times@@Prime/@#],SameQ@@hwt/@#&]]>1&]],{n,10}]

Formula

a(n) = A000041(n) - A321451(n).

Extensions

a(26)-a(52) from Alois P. Heinz, Nov 11 2018

A321451 Number of integer partitions of n that cannot be partitioned into two or more blocks with equal sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 4, 14, 8, 20, 16, 55, 22, 100, 45, 108, 64, 296, 93, 489, 145, 447, 241, 1254, 284, 1692, 487, 1492, 627, 4564, 811, 6841, 1172, 4531, 1744, 12260, 1970, 21636, 3103, 12193, 3719, 44582, 4645, 63260, 6417, 29947, 8987, 124753, 9784, 162107, 14247
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Examples

			The a(1) = 1 through a(9) = 20 partitions:
  (1)  (2)  (3)   (4)   (5)     (6)    (7)       (8)     (9)
            (21)  (31)  (32)    (42)   (43)      (53)    (54)
                        (41)    (51)   (52)      (62)    (63)
                        (221)   (411)  (61)      (71)    (72)
                        (311)          (322)     (332)   (81)
                        (2111)         (331)     (521)   (432)
                                       (421)     (611)   (441)
                                       (511)     (5111)  (522)
                                       (2221)            (531)
                                       (3211)            (621)
                                       (4111)            (711)
                                       (22111)           (3222)
                                       (31111)           (4221)
                                       (211111)          (4311)
                                                         (5211)
                                                         (6111)
                                                         (22221)
                                                         (42111)
                                                         (51111)
                                                         (411111)
A complete list of all multiset partitions of the partition (2111) into two or more blocks is: ((1)(112)), ((2)(111)), ((11)(12)), ((1)(1)(12)), ((1)(2)(11)), ((1)(1)(1)(2)). None of these has equal block-sums, so (2111) is counted toward a(5).
On the other hand, the partition (321) can be partitioned as ((12)(3)), which has two or more blocks and equal block-sums, so (321) is not counted toward a(6).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[facs[Times@@Prime/@#],SameQ@@hwt/@#&]]==1&]],{n,10}]

Formula

a(n) = A000041(n) - A321452(n).

Extensions

a(33)-a(50) from Alois P. Heinz, Nov 11 2018

A321454 Numbers that can be factored into two or more factors all having the same sum of prime indices.

Original entry on oeis.org

4, 8, 9, 12, 16, 25, 27, 30, 32, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 125, 128, 144, 150, 154, 160, 165, 169, 180, 192, 196, 198, 200, 210, 216, 220, 225, 240, 243, 252, 256, 264, 270, 273, 280, 286, 288, 289, 300, 320, 324, 325
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also Heinz numbers of integer partitions that can be partitioned into two or more blocks with equal sums. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The sequence of all integer partitions that can be partitioned into two or more blocks with equal sums begins: (11), (111), (22), (211), (1111), (33), (222), (321), (11111), (2211), (3111), (21111), (44), (422), (111111), (431), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (333), (1111111), (221111), (3321), (541), (311111), (532), (66), (32211), (2111111), (4411), (5221), (33111).
The Heinz number of (32111) is 120, which has factorization (10*12) corresponding to the multiset partition ((13)(112)) whose blocks have equal sums, so 120 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],And[Length[#]>1,SameQ@@hwt/@#]&]!={}&]

A321453 Numbers that cannot be factored into two or more factors all having the same sum of prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also Heinz numbers of integer partitions that cannot be partitioned into two or more blocks with equal sums. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The sequence of all integer partitions that cannot be partitioned into two or more blocks with equal sums begins: (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (221), (8), (311), (42), (51), (9), (2111), (61), (411).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],And[Length[#]>1,SameQ@@hwt/@#]&]=={}&]

A319169 Number of integer partitions of n whose parts all have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 7, 11, 11, 14, 15, 20, 19, 26, 27, 34, 35, 43, 45, 59, 60, 72, 77, 94, 98, 118, 125, 148, 158, 184, 198, 233, 245, 282, 308, 353, 374, 428, 464, 525, 566, 635, 686, 779, 832, 930, 1005, 1123, 1208, 1345, 1451, 1609, 1732, 1912
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Examples

			The a(1) = 1 through a(9) = 6 integer partitions:
  1  2   3    4     5      6       7        8         9
     11  111  22    32     33      52       44        72
              1111  11111  222     322      53        333
                           111111  1111111  332       522
                                            2222      3222
                                            11111111  111111111
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, f) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, f)+(o-> `if`(f in {0, o}, b(n-i, min(i, n-i),
         `if`(f=0, o, f)), 0))(numtheory[bigomega](i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..75);  # Alois P. Heinz, Dec 15 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,30}]
    (* Second program: *)
    b[n_, i_, f_] := b[n, i, f] = If[n == 0, 1, If[i < 1, 0,
         b[n, i-1, f] + Function[o, If[f == 0 || f == o, b[n-i, Min[i, n-i],
         If[f == 0, o, f]], 0]][PrimeOmega[i]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 75] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

a(51)-a(58) from Chai Wah Wu, Nov 12 2018

A371794 Number of non-biquanimous strict integer partitions of n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 12, 11, 18, 15, 27, 23, 38, 30, 54, 43, 76, 57, 104, 79, 142, 102, 192, 138, 256, 174, 340, 232, 448, 292, 585, 375, 760, 471, 982, 602, 1260, 741, 1610, 935, 2048, 1148, 2590, 1425, 3264, 1733, 4097, 2137, 5120, 2571, 6378
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(11) = 12 strict partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)   (65)
                        (41)  (51)  (52)   (62)   (63)   (73)   (74)
                                    (61)   (71)   (72)   (82)   (83)
                                    (421)  (521)  (81)   (91)   (92)
                                                  (432)  (631)  (A1)
                                                  (531)  (721)  (542)
                                                  (621)         (632)
                                                                (641)
                                                                (731)
                                                                (821)
                                                                (5321)
		

Crossrefs

The complement is counted by A237258 aerated, ranks A357854.
Even bisection is A321142, odd A078408.
This is the "bi-" version of A371736, complement A371737.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!biqQ[#]&]],{n,0,30}]
Showing 1-10 of 39 results. Next