A320322 Number of integer partitions of n whose product is a perfect power.
1, 0, 0, 0, 2, 2, 5, 5, 9, 11, 18, 19, 28, 30, 42, 50, 68, 76, 102, 113, 146, 170, 212, 241, 312, 356, 441, 514, 628, 720, 887, 1008, 1215, 1403, 1660, 1903, 2291, 2609, 3107, 3594, 4254, 4864, 5739, 6546, 7672, 8811, 10237, 11651, 13583, 15420, 17867, 20382
Offset: 0
Keywords
Examples
The a(4) = 2 through a(11) = 19 integer partitions: 4 41 33 331 8 9 55 551 22 221 42 421 44 81 82 632 222 2221 422 333 91 821 411 4111 2222 441 433 911 2211 22111 3311 4221 442 4331 4211 22221 811 4421 22211 33111 3322 8111 41111 42111 3331 33221 221111 222111 4222 33311 411111 4411 42221 2211111 22222 44111 42211 222221 222211 422111 331111 2222111 421111 3311111 2221111 4211111 4111111 22211111 22111111 41111111 221111111
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],GCD@@FactorInteger[Times@@#][[All,2]]>1&]],{n,30}]
Comments