A305551 Number of partitions of partitions of n where all partitions have the same sum.
1, 1, 3, 4, 9, 8, 22, 16, 43, 41, 77, 57, 201, 102, 264, 282, 564, 298, 1175, 491, 1878, 1509, 2611, 1256, 7872, 2421, 7602, 8026, 16304, 4566, 38434, 6843, 48308, 41078, 56582, 28228, 221115, 21638, 146331, 208142, 453017, 44584, 844773, 63262, 1034193, 1296708
Offset: 0
Keywords
Examples
The a(4) = 9 partitions of partitions where all partitions have the same sum: (4), (31), (22), (211), (1111), (2)(2), (2)(11), (11)(11), (1)(1)(1)(1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[PartitionsP[n/k]+k-1,k],{k,Divisors[n]}],{n,60}]
-
PARI
a(n)={if(n<1, n==0, sumdiv(n, d, binomial(numbpart(n/d) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018
Formula
a(n) = Sum_{d|n} binomial(A000041(n/d) + d - 1, d).
Comments