A306017
Number of non-isomorphic multiset partitions of weight n in which all parts have the same size.
Original entry on oeis.org
1, 1, 4, 6, 17, 14, 66, 30, 189, 222, 550, 112, 4696, 202, 5612, 30914, 63219, 594, 453125, 980, 3602695, 5914580, 1169348, 2510, 299083307, 232988061, 23248212, 2669116433, 14829762423, 9130, 170677509317, 13684, 1724710753084, 2199418340875, 14184712185, 38316098104262
Offset: 0
Non-isomorphic representatives of the a(4) = 17 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
Cf.
A000005,
A001315,
A007716,
A038041,
A049311,
A283877,
A298422,
A306018,
A306019,
A306020,
A306021,
A318951.
-
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 07 2019, after Andrew Howroyd *)
-
\\ See A318951 for RowSumMats.
a(n)={sumdiv(n,d,RowSumMats(n/d,n,d))} \\ Andrew Howroyd, Sep 05 2018
A319066
Number of partitions of integer partitions of n where all parts have the same length.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 26, 35, 59, 82, 128, 176, 273, 371, 553, 768, 1119, 1544, 2235, 3084, 4410, 6111, 8649, 11982, 16901, 23383, 32780, 45396, 63365, 87622, 121946, 168407, 233605, 322269, 445723, 613922, 847131, 1164819, 1603431, 2201370, 3023660, 4144124, 5680816
Offset: 0
The a(1) = 1 through a(5) = 14 multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1},{1}} {{1,1,1}} {{2,2}} {{2,3}}
{{1},{2}} {{1,1,2}} {{1,1,3}}
{{1},{1},{1}} {{1},{3}} {{1,2,2}}
{{2},{2}} {{1},{4}}
{{1,1,1,1}} {{2},{3}}
{{1,1},{1,1}} {{1,1,1,2}}
{{1},{1},{2}} {{1,1,1,1,1}}
{{1},{1},{1},{1}} {{1,1},{1,2}}
{{1},{1},{3}}
{{1},{2},{2}}
{{1},{1},{1},{2}}
{{1},{1},{1},{1},{1}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Length/@#&]],{n,8}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=1/prod(k=1, n, 1 - x^k*y + O(x*x^n))); concat([1], sum(k=1, n, EulerT(Vec(polcoef(p, k, y), -n))))} \\ Andrew Howroyd, Oct 25 2018
A320322
Number of integer partitions of n whose product is a perfect power.
Original entry on oeis.org
1, 0, 0, 0, 2, 2, 5, 5, 9, 11, 18, 19, 28, 30, 42, 50, 68, 76, 102, 113, 146, 170, 212, 241, 312, 356, 441, 514, 628, 720, 887, 1008, 1215, 1403, 1660, 1903, 2291, 2609, 3107, 3594, 4254, 4864, 5739, 6546, 7672, 8811, 10237, 11651, 13583, 15420, 17867, 20382
Offset: 0
The a(4) = 2 through a(11) = 19 integer partitions:
4 41 33 331 8 9 55 551
22 221 42 421 44 81 82 632
222 2221 422 333 91 821
411 4111 2222 441 433 911
2211 22111 3311 4221 442 4331
4211 22221 811 4421
22211 33111 3322 8111
41111 42111 3331 33221
221111 222111 4222 33311
411111 4411 42221
2211111 22222 44111
42211 222221
222211 422111
331111 2222111
421111 3311111
2221111 4211111
4111111 22211111
22111111 41111111
221111111
-
Table[Length[Select[IntegerPartitions[n],GCD@@FactorInteger[Times@@#][[All,2]]>1&]],{n,30}]
A321719
Number of non-normal semi-magic squares with sum of entries equal to n.
Original entry on oeis.org
1, 1, 3, 7, 28, 121, 746, 5041, 40608, 362936, 3635017, 39916801, 479206146, 6227020801, 87187426839, 1307674521272, 20923334906117, 355687428096001, 6402415241245577, 121645100408832001, 2432905938909013343, 51090942176372298027, 1124001180562929946213
Offset: 0
The a(3) = 7 semi-magic squares:
[3]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
a(6) corrected and a(8)-a(15) added by
Chai Wah Wu, Jan 14 2019
A320325
Numbers whose product of prime indices is a perfect power.
Original entry on oeis.org
7, 9, 14, 18, 19, 21, 23, 25, 27, 28, 36, 38, 42, 46, 49, 50, 53, 54, 56, 57, 63, 72, 76, 81, 84, 92, 97, 98, 100, 103, 106, 108, 112, 114, 115, 121, 125, 126, 131, 133, 144, 147, 151, 152, 159, 161, 162, 168, 169, 171, 175, 183, 184, 185, 189, 194, 195, 196
Offset: 1
The terms together with their corresponding multiset multisystems (A302242):
7: {{1,1}}
9: {{1},{1}}
14: {{},{1,1}}
18: {{},{1},{1}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
42: {{},{1},{1,1}}
46: {{},{2,2}}
49: {{1,1},{1,1}}
50: {{},{2},{2}}
53: {{1,1,1,1}}
54: {{},{1},{1},{1}}
56: {{},{},{},{1,1}}
57: {{1},{1,1,1}}
63: {{1},{1},{1,1}}
72: {{},{},{},{1},{1}}
76: {{},{},{1,1,1}}
81: {{1},{1},{1},{1}}
Cf.
A000720,
A001222,
A001597,
A003963,
A056239,
A064573,
A112798,
A302242,
A305551,
A306017,
A319056,
A319066,
A320322,
A320323,
A320324.
-
Select[Range[100],GCD@@FactorInteger[Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]][[All,2]]>1&]
A319169
Number of integer partitions of n whose parts all have the same number of prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 7, 11, 11, 14, 15, 20, 19, 26, 27, 34, 35, 43, 45, 59, 60, 72, 77, 94, 98, 118, 125, 148, 158, 184, 198, 233, 245, 282, 308, 353, 374, 428, 464, 525, 566, 635, 686, 779, 832, 930, 1005, 1123, 1208, 1345, 1451, 1609, 1732, 1912
Offset: 0
The a(1) = 1 through a(9) = 6 integer partitions:
1 2 3 4 5 6 7 8 9
11 111 22 32 33 52 44 72
1111 11111 222 322 53 333
111111 1111111 332 522
2222 3222
11111111 111111111
Cf.
A000607,
A001222,
A003963,
A064573,
A279787,
A305551,
A319056,
A319066,
A319071,
A320322,
A320324.
-
b:= proc(n, i, f) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, f)+(o-> `if`(f in {0, o}, b(n-i, min(i, n-i),
`if`(f=0, o, f)), 0))(numtheory[bigomega](i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..75); # Alois P. Heinz, Dec 15 2018
-
Table[Length[Select[IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,30}]
(* Second program: *)
b[n_, i_, f_] := b[n, i, f] = If[n == 0, 1, If[i < 1, 0,
b[n, i-1, f] + Function[o, If[f == 0 || f == o, b[n-i, Min[i, n-i],
If[f == 0, o, f]], 0]][PrimeOmega[i]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 75] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A319189
Number of uniform regular hypergraphs spanning n vertices.
Original entry on oeis.org
1, 1, 2, 3, 10, 29, 3780, 5012107
Offset: 0
The a(4) = 10 edge-sets:
{{1,2,3,4}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1},{2},{3},{4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,2},{1,4},{2,3},{3,4}}
{{1,3},{1,4},{2,3},{2,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Inequivalent representatives of the a(4) = 10 matrices:
[1 1 1 1]
.
[1 1 0 0] [1 0 1 0] [1 0 0 1]
[0 0 1 1] [0 1 0 1] [0 1 1 0]
.
[1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0]
[0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1]
[0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1]
[0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1]
.
[1 1 0 0]
[1 0 1 0]
[1 0 0 1]
[0 1 1 0]
[0 1 0 1]
[0 0 1 1]
Uniform hypergraphs are counted by
A306021. Unlabeled uniform regular multiset partitions are counted by
A319056. Regular graphs are
A295193. Uniform clutters are
A299353.
-
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}]
A321717
Number of non-normal (0,1) semi-magic rectangles with sum of all entries equal to n.
Original entry on oeis.org
1, 1, 4, 8, 39, 122, 950, 5042, 45594, 366243, 3858148, 39916802, 494852628, 6227020802, 88543569808, 1308012219556, 21086562956045, 355687428096002, 6427672041650478, 121645100408832002, 2437655776358606198, 51091307191310604724, 1125098543553717372868, 25852016738884976640002, 620752122372339473623314, 15511210044577707470250243
Offset: 0
The a(3) = 8 semi-magic rectangles:
[1 1 1]
.
[1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321718
Number of coupled non-normal semi-magic rectangles with sum of entries equal to n.
Original entry on oeis.org
1, 1, 5, 9, 44, 123, 986, 5043, 45832, 366300, 3862429, 39916803, 495023832, 6227020803, 88549595295, 1308012377572, 21086922542349, 355687428096003, 6427700493998229, 121645100408832003, 2437658338007783347, 51091307195905020227, 1125098837523651728389, 25852016738884976640003, 620752163206546966698620, 15511210044577707492319496
Offset: 0
The a(3) = 9 coupled semi-magic rectangles:
[3] [1 1 1]
.
[1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321721
Number of non-isomorphic non-normal semi-magic square multiset partitions of weight n.
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 7, 2, 10, 7, 12, 2, 38, 2, 21, 46, 72, 2, 162, 2, 420, 415, 64, 2, 4987, 1858, 110, 9336, 45456, 2, 136018, 2, 1014658, 406578, 308, 3996977, 34937078, 2, 502, 28010167, 1530292965, 2, 508164038, 2, 54902992348, 51712929897, 1269, 2, 3217847072904, 8597641914, 9168720349613
Offset: 0
Non-isomorphic representatives of the a(2) = 2 through a(6) = 7 multiset partitions:
{{11}} {{111}} {{1111}} {{11111}} {{111111}}
{{1}{2}} {{1}{2}{3}} {{11}{22}} {{1}{2}{3}{4}{5}} {{111}{222}}
{{12}{12}} {{112}{122}}
{{1}{2}{3}{4}} {{11}{22}{33}}
{{11}{23}{23}}
{{12}{13}{23}}
{{1}{2}{3}{4}{5}{6}}
Inequivalent representatives of the a(6) = 7 matrices:
[6]
.
[3 0] [2 1]
[0 3] [1 2]
.
[2 0 0] [2 0 0] [1 1 0]
[0 2 0] [0 1 1] [1 0 1]
[0 0 2] [0 1 1] [0 1 1]
.
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
Inequivalent representatives of the a(9) = 7 matrices:
[9]
.
[3 0 0] [3 0 0] [2 1 0] [2 1 0] [1 1 1]
[0 3 0] [0 2 1] [1 1 1] [1 0 2] [1 1 1]
[0 0 3] [0 1 2] [0 1 2] [0 2 1] [1 1 1]
.
[1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]
Showing 1-10 of 46 results.
Comments