cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A179638 Decimal expansion of the volume of gyroelongated square pyramid with edge length 1.

Original entry on oeis.org

1, 1, 9, 2, 7, 0, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 5, 5, 9, 0, 6, 0, 1, 9, 8, 4, 2, 8, 3, 7, 7, 2, 5, 1, 5, 8, 1, 5, 5, 2, 6, 2, 5, 5, 1, 8, 2, 8, 8, 6, 2, 0, 1, 5, 7, 0, 7, 7, 9, 3, 1, 4, 2, 1, 8, 8, 8, 2, 2, 7, 4, 7, 2, 4, 5, 5, 2, 5, 8, 3, 8, 6, 3, 0, 8, 2, 0, 7, 7, 0, 6, 7, 0, 0, 1, 8, 1, 1, 7, 7, 4, 7, 6, 3, 8
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated square pyramid: 9 vertices, 20 edges, and 13 faces.

Examples

			1.19270224223223255906019842837725158155262551828862015707793142188822...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(Sqrt[2]+2*Sqrt[4+3*Sqrt[2]])/6,200]]

Formula

Digits of (sqrt(2)+2 sqrt(4+3 sqrt(2)))/6.

A384213 Decimal expansion of the volume of an elongated pentagonal rotunda with unit edge.

Original entry on oeis.org

1, 4, 6, 1, 1, 9, 7, 1, 8, 1, 1, 0, 6, 2, 8, 3, 5, 5, 7, 6, 3, 3, 8, 7, 2, 2, 4, 7, 0, 7, 9, 4, 9, 1, 5, 8, 9, 3, 5, 5, 7, 6, 3, 1, 3, 6, 8, 2, 9, 4, 1, 4, 2, 5, 1, 0, 3, 1, 4, 9, 9, 5, 0, 5, 6, 9, 3, 5, 3, 9, 6, 1, 9, 9, 2, 2, 4, 6, 1, 7, 5, 7, 0, 3, 0, 6, 9, 0, 4, 7
Offset: 2

Views

Author

Paolo Xausa, May 23 2025

Keywords

Comments

The elongated pentagonal rotunda is Johnson solid J_21.

Examples

			14.611971811062835576338722470794915893557631368294...
		

Crossrefs

Cf. A179637 (surface area - 10).

Programs

  • Mathematica
    First[RealDigits[(45 + 17*Sqrt[5] + 30*Sqrt[5 + Sqrt[20]])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J21", "Volume"], 10, 100]]

Formula

Equals (45 + 17*sqrt(5) + 30*sqrt(5 + 2*sqrt(5)))/12 = (45 + 17*A002163 + 30*sqrt(5 + A010476))/12.
Equals the largest real root of 1296*x^4 - 19440*x^3 + 2340*x^2 + 70200*x + 43525.

A179639 Decimal expansion of the volume of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

1, 8, 8, 0, 1, 9, 2, 1, 5, 8, 2, 2, 9, 0, 8, 7, 8, 0, 2, 8, 2, 0, 1, 0, 6, 7, 9, 2, 4, 4, 0, 8, 9, 5, 2, 5, 4, 9, 5, 6, 8, 9, 8, 5, 5, 1, 5, 2, 0, 9, 8, 8, 8, 1, 3, 2, 6, 8, 2, 5, 3, 1, 3, 3, 6, 9, 5, 6, 1, 2, 0, 1, 3, 7, 8, 0, 8, 4, 3, 5, 0, 3, 9, 4, 7, 0, 7, 2, 0, 6, 9, 8, 0, 8, 7, 1, 0, 0, 1, 9, 7, 8, 0, 2, 3
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices,25 edges,and 16 faces.

Examples

			1.88019215822908780282010679244089525495689855152098881326825313369561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(25+9*Sqrt[5])/24,200]]

Formula

Digits of (25+9*sqrt(5))/24.

A179640 Decimal expansion of the surface area of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

8, 2, 1, 5, 6, 6, 7, 9, 2, 8, 9, 7, 2, 2, 5, 6, 7, 7, 3, 4, 8, 6, 9, 3, 5, 7, 5, 8, 0, 3, 5, 6, 3, 0, 9, 7, 5, 4, 4, 2, 8, 9, 3, 8, 7, 1, 7, 9, 9, 1, 2, 5, 6, 8, 4, 4, 1, 6, 3, 7, 0, 8, 7, 9, 9, 6, 8, 6, 1, 7, 8, 0, 5, 6, 1, 6, 9, 6, 6, 3, 7, 0, 3, 8, 6, 7, 3, 9, 4, 4, 1, 7, 2, 7, 2, 6, 9, 8, 9, 9, 2, 7, 7, 4, 7
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices, 25 edges, and 16 faces.

Examples

			8.21566792897225677348693575803563097544289387179912568441637087996861...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5/2*(70+Sqrt[5]+3*Sqrt[75+30*Sqrt[5]])]/2,200]]

Formula

Digits of sqrt(5/2*(70+sqrt(5)+3*sqrt(75+30*sqrt(5))))/2.

A179641 Decimal expansion of the volume of pentagonal dipyramid with edge length 1.

Original entry on oeis.org

6, 0, 3, 0, 0, 5, 6, 6, 4, 7, 9, 1, 6, 4, 9, 1, 4, 1, 3, 6, 7, 4, 3, 1, 1, 3, 9, 0, 6, 0, 9, 3, 9, 6, 8, 6, 2, 8, 6, 7, 1, 8, 1, 9, 6, 6, 3, 4, 2, 9, 3, 8, 1, 0, 3, 5, 5, 9, 0, 8, 1, 0, 3, 7, 8, 4, 2, 1, 0, 0, 7, 7, 1, 3, 6, 4, 8, 3, 7, 4, 1, 6, 1, 7, 8, 6, 7, 8, 6, 7, 3, 6, 4, 8, 9, 8, 5, 2, 2, 9, 1, 4, 1, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Pentagonal dipyramid: 7 vertices, 15 edges, and 10 faces.

Examples

			0.60300566479164914136743113906093968628671819663429381035590810378421...
		

Crossrefs

Programs

Formula

Digits of (5+sqrt(5))/12.

Extensions

Offset corrected by R. J. Mathar, Aug 15 2010

A386530 Decimal expansion of the largest dihedral angle, in radians, in an elongated pentagonal rotunda (Johnson solid J_21).

Original entry on oeis.org

2, 9, 5, 2, 8, 8, 2, 1, 2, 2, 8, 0, 6, 2, 3, 1, 1, 6, 8, 6, 8, 1, 5, 0, 8, 9, 8, 3, 0, 9, 6, 8, 9, 4, 7, 1, 1, 8, 6, 0, 3, 9, 8, 5, 3, 3, 6, 9, 8, 2, 4, 6, 3, 4, 2, 9, 9, 1, 1, 4, 9, 7, 3, 4, 3, 2, 1, 8, 7, 0, 6, 8, 6, 6, 3, 0, 9, 1, 1, 1, 7, 1, 0, 1, 9, 0, 6, 7, 9, 6
Offset: 1

Views

Author

Paolo Xausa, Aug 22 2025

Keywords

Comments

This is the dihedral angle between a triangular face and a square face (at the edge where the prism and rotunda parts of the solid meet).
Also the analogous dihedral angle in Johnson solids J_40-J_43.

Examples

			2.9528821228062311686815089830968947118603985336982...
		

Crossrefs

Cf. other J_21 dihedral angles: A019669, A228824, A344075, A387191.
Cf. A384213 (J_21 volume), A179637 (J_21 surface area - 10).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[2*(5 + Sqrt[5])/15]], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J21", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt(2*(5 + sqrt(5))/15)) = arccos(-sqrt(2*(5 + A002163)/15)).

A387191 Decimal expansion of the second largest dihedral angle, in radians, in an elongated pentagonal rotunda (Johnson solid J_21).

Original entry on oeis.org

2, 6, 7, 7, 9, 4, 5, 0, 4, 4, 5, 8, 8, 9, 8, 7, 1, 2, 2, 2, 4, 8, 3, 8, 7, 1, 5, 1, 8, 1, 8, 2, 8, 8, 4, 8, 2, 1, 6, 8, 6, 3, 2, 3, 4, 5, 0, 8, 8, 9, 8, 5, 5, 5, 7, 1, 6, 4, 0, 1, 1, 5, 0, 3, 5, 8, 7, 6, 1, 8, 5, 4, 2, 1, 2, 0, 4, 6, 7, 2, 9, 3, 3, 2, 7, 4, 3, 4, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 22 2025

Keywords

Comments

This is the dihedral angle between a square face and a pentagonal face.
Also one of the dihedral angles in Johnson solids J_40-J_43, J_72-J_75, J_77-J_79 and J_82.

Examples

			2.677945044588987122248387151818288482168632345...
		

Crossrefs

Cf. other J_21 dihedral angles: A019669, A228824, A344075, A386530.
Cf. A384213 (J_21 volume), A179637 (J_21 surface area - 10).

Programs

  • Mathematica
    First[RealDigits[Pi/2 + ArcTan[2], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J21", "DihedralAngles"]], 2], 10, 100]]

Formula

Equals Pi/2 + arctan(2) = A019669 + A105199.
Equals arccos(-2*sqrt(5)/5) = arccos(-A010476/5).

A386853 Decimal expansion of the dihedral angle, in radians, between the 10-gonal face and a triangular face in a pentagonal rotunda (Johnson solid J_6).

Original entry on oeis.org

1, 3, 8, 2, 0, 8, 5, 7, 9, 6, 0, 1, 1, 3, 3, 4, 5, 4, 9, 4, 5, 0, 1, 8, 7, 2, 9, 1, 4, 5, 7, 1, 4, 3, 2, 6, 9, 7, 6, 1, 8, 1, 3, 8, 3, 4, 0, 1, 0, 6, 9, 3, 4, 3, 2, 5, 0, 3, 6, 7, 7, 4, 3, 8, 1, 6, 7, 9, 6, 2, 4, 8, 3, 4, 8, 7, 8, 0, 6, 6, 7, 1, 7, 0, 5, 0, 5, 0, 5, 5
Offset: 1

Views

Author

Paolo Xausa, Aug 06 2025

Keywords

Examples

			1.38208579601133454945018729145714326976181383401...
		

Crossrefs

Cf. A179593 (volume), A179637 (surface area).
Cf. other J_6 dihedral angles: A105199, A344075.

Programs

  • Mathematica
    First[RealDigits[ArcCos[Sqrt[(5 - Sqrt[20])/15]], 10, 100]] (* or *)
    First[RealDigits[RankedMin[Union[PolyhedronData["J6", "DihedralAngles"]], 2], 10, 100]]
  • PARI
    acos(sqrt((5 - 2*sqrt(5))/15)) \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals arccos(sqrt((5 - 2*sqrt(5))/15)) = arccos(sqrt((5 - A010476)/15)).
Showing 1-8 of 8 results.