cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179643 Products of exactly 2 distinct squares of primes and a different prime (p^2 * q^2 * r).

Original entry on oeis.org

180, 252, 300, 396, 450, 468, 588, 612, 684, 700, 828, 882, 980, 1044, 1100, 1116, 1300, 1332, 1452, 1476, 1548, 1575, 1692, 1700, 1900, 1908, 2028, 2124, 2156, 2178, 2196, 2205, 2300, 2412, 2420, 2450, 2475, 2548, 2556, 2628, 2844, 2900, 2925, 2988
Offset: 1

Views

Author

Keywords

Comments

A050326(a(n)) = 5, subsequence of A225228. - Reinhard Zumkeller, May 03 2013

Examples

			180 = 2^2 * 3^2 * 5, 252 = 2^2 * 3^2 * 7, 300 = 2^2 * 3 * 5^2, ...
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,2}; Select[Range[3000], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,sqrt(lim\12),forprime(q=p+1,sqrt(lim\p^2\2),t=(p*q)^2;forprime(r=2,lim\t,if(p==r||q==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A179643(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=isqrt(x//r))))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(x+1))+sum(primepi(isqrt(x//p**3)) for p in primerange(integer_nthroot(x,3)[0]+1))-primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025