cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179668 Products of the 8th power of a prime and a distinct prime (p^8*q).

Original entry on oeis.org

768, 1280, 1792, 2816, 3328, 4352, 4864, 5888, 7424, 7936, 9472, 10496, 11008, 12032, 13122, 13568, 15104, 15616, 17152, 18176, 18688, 20224, 21248, 22784, 24832, 25856, 26368, 27392, 27904, 28928, 32512, 32805, 33536, 35072, 35584, 38144, 38656, 40192
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,8}; Select[Range[40000], f]
    With[{nn=40},Take[Union[#[[1]]^8 #[[2]]&/@Flatten[Permutations/@Subsets[ Prime[Range[nn]],{2}],1]],nn]] (* Harvey P. Dale, Jan 20 2016 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\2)^(1/8),t=p^8;forprime(q=2,lim\t,if(p==q,next);listput(v,t*q)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A179668(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025