cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179671 Products of the 5th power of a prime and a distinct prime of the 3rd power (p^5*q^3).

Original entry on oeis.org

864, 1944, 4000, 10976, 25000, 30375, 42592, 70304, 83349, 84375, 134456, 157216, 219488, 323433, 389344, 453789, 533871, 780448, 953312, 1071875, 1193859, 1288408, 1620896, 1666737, 2100875, 2205472, 2544224, 2956581, 2970344, 3322336, 4159375, 4348377
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,5}; Select[Range[10^6], f]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179671(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,8)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(5) - P(8) = A085541 * A085965 - A085968 = 0.002187..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020