A179671 Products of the 5th power of a prime and a distinct prime of the 3rd power (p^5*q^3).
864, 1944, 4000, 10976, 25000, 30375, 42592, 70304, 83349, 84375, 134456, 157216, 219488, 323433, 389344, 453789, 533871, 780448, 953312, 1071875, 1193859, 1288408, 1620896, 1666737, 2100875, 2205472, 2544224, 2956581, 2970344, 3322336, 4159375, 4348377
Offset: 1
Keywords
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={3,5}; Select[Range[10^6], f]
-
Python
from sympy import primepi, integer_nthroot, primerange def A179671(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,8)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
Sum_{n>=1} 1/a(n) = P(3)*P(5) - P(8) = A085541 * A085965 - A085968 = 0.002187..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020