A179680 The number of exponents >1 in a recursive reduction of 2n-1 until reaching an odd part equal to 1.
0, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 3, 5, 5, 7, 1, 1, 3, 9, 3, 3, 3, 3, 6, 5, 2, 13, 5, 3, 15, 15, 1, 1, 17, 5, 9, 1, 5, 7, 10, 13, 21, 1, 7, 2, 3, 2, 9, 11, 9, 25, 13, 2, 27, 9, 9, 5, 11, 2, 6, 27, 5, 25, 1, 1, 33, 3, 9, 15, 35, 11, 15, 3, 11, 37, 3, 6, 5, 13, 13
Offset: 1
Keywords
Examples
For n = 9, 2*n-1 = 17, we have v_1 = v_2 = v_3 = 1, v_4 = 5. Thus a(9) = 1. For n = 10, 2*n-1 = 19, we have v_1 = 2, v_2 = 3, v_3 = v_4 = v_5 = 1, v_6 = v_7 = 2, v_8 = 1, v_9 = 5. Thus a(10) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8192
Programs
-
Maple
A179680 := proc(n) local l,m,a ,N ; N := 2*n-1 ; a := 0 ; l := A007814(N+1) ; m := A000265(N+1) ; if l > 1 then a := a+1 ; end if; while m <> 1 do l := A007814(N+m) ; if l > 1 then a := a+1 ; end if; m := A000265(N+m) ; end do: a ; end proc: seq(A179680(n),n=1..80) ; # R. J. Mathar, Apr 05 2011
-
Mathematica
a7814[n_] := IntegerExponent[n, 2]; a265[n_] := n/2^IntegerExponent[n, 2]; a[n_] := Module[{l, m, k, nn}, nn = 2n-1; k = 0; l = a7814[nn+1]; m = a265[nn+1]; If[l>1, k++]; While[m != 1, l = a7814[nn+m]; If[l>1, k++]; m = a265[nn+m]]; k]; Array[a, 80] (* Jean-François Alcover, Jul 30 2018, after R. J. Mathar *)
-
Sage
def A179680(n): s, m, N = 0, 1, 2*n - 1 while True: k = N + m v = valuation(k, 2) if v > 1: s += 1 m = k >> v if m == 1: break return s print([A179680(n) for n in (1..80)]) # Peter Luschny, Oct 07 2017
-
Scheme
(define (A179680 n) (let ((x (+ n n -1))) (let loop ((s (- 1 (A000035 n))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) s (loop (+ s (if (> (A007814 (+ x m)) 1) 1 0)) m)))))) ;; Antti Karttunen, Oct 02 2017
Comments