cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179691 Numbers p^5*q^2*r where p, q, r are 3 distinct primes.

Original entry on oeis.org

1440, 2016, 2400, 3168, 3744, 4704, 4860, 4896, 5472, 5600, 6624, 6804, 7840, 8352, 8800, 8928, 10400, 10656, 10692, 11616, 11808, 12150, 12384, 12636, 13536, 13600, 15200, 15264, 16224, 16524, 16992, 17248, 17568, 18400, 18468, 19296, 19360
Offset: 1

Views

Author

Keywords

Crossrefs

Part of the list A178739 .. A179696 (and A030514 .. A030629, A189982 .. A189990 etc, cf. A101296). - M. F. Hasler, Jul 17 2019
Subsequence of A175746 (numbers with 36 divisors).

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,5}; Select[Range[20000], f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/5), t1=p^5;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A179691(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//(p**5*q**2)) for p in primerange(integer_nthroot(x,5)[0]+1) for q in primerange(isqrt(x//p**5)+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(isqrt(x//p**6)) for p in primerange(integer_nthroot(x,6)[0]+1))+sum(primepi(x//p**7) for p in primerange(integer_nthroot(x,7)[0]+1))-(primepi(integer_nthroot(x,8)[0])<<1)
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

Name improved by M. F. Hasler, Jul 17 2019