cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A179798 Record minima of the positive distance d between the 11th power of a positive integer x and the square of an integer y such that d = x^13 - y^2 (x <> k^2 and y <> k^13).

Original entry on oeis.org

92, 1679, 39281, 89927, 296863, 1530322, 12056004, 55972895, 67903894, 102383343, 641211875, 5148097536, 13764973788, 19839459725, 87957606400, 113794567580, 126889914716, 146745583311, 880304597278, 1154049177924
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^13.
For x values see A179799.
For x values see A179800.
Conjecture (Artur Jasinski):
For any positive number x >= A179799(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^13) can't be less than A179798(n).

Crossrefs

Programs

  • Mathematica
    d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179800 Values y for record minima of the positive distance d between the thirteenth power of a positive integer x and the square of an integer y such that d = x^13 - y^2 (x <> k^2 and y <> k^13).

Original entry on oeis.org

90, 1262, 34938, 114283, 741455, 5875603, 17403307, 28172943, 709955183, 936209559, 10875326100, 25905378592, 35572991418, 55703353220, 110485434560, 182204642678, 447245502234, 984322154617, 2160608565081, 3477146726351
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^13.
For d values see A179798.
For x values see A179799.
Conjecture: For any positive number x >= A179799(n), the distance d between the 13th power of x and the square of any y (such that x <> k^2 and y <> k^13) can't be less than A179798(n).

Crossrefs

Programs

  • Mathematica
    d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy

A179812 Record minima of the positive distance d between the fifteenth power of a positive integer x and the square of an integer y such that d = x^15 - y^2 (x <> k^2 and y <> k^15).

Original entry on oeis.org

7, 7538, 283261, 494576, 4235622, 7135951, 38053824, 55905695, 185380312, 1208691743, 3263221507, 14034746735, 14732727599, 24211719874, 68491624661, 136264246246, 5337970328375, 6845918569200, 15505738619231, 30037885135088
Offset: 1

Views

Author

Artur Jasinski, Jul 28 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^15.
For x values see A179813.
For y values see A179814.
Conjecture: For any positive number x >= A179813(n), the distance d between the fifteenth power of x and the square of any y (such that x <> k^2 and y <> k^15) can't be less than A179812(n).

Crossrefs

Programs

  • Mathematica
    d = 15; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179813 Values x for record minima of the positive distance d between the fifteenth power of a positive integer x and the square of an integer y such that d = x^15 - y^2 (x <> k^2 and y <> k^15).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 17, 18, 23, 24, 27, 35, 45, 55, 56, 76, 78, 84, 111, 114, 115, 117, 118, 139, 164, 172, 175, 176, 179, 183, 188, 190, 193, 305, 316, 377, 395, 461, 466, 483, 485, 654, 747, 868, 877, 931, 1045, 1434, 1822, 2199, 2645, 2754, 3171, 3961
Offset: 1

Views

Author

Artur Jasinski, Jul 28 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^15.
For x values see A179813.
For y values see A179814.
Conjecture: For any positive number x >= A179813(n), the distance d between the fifteenth power of x and the square of any y (such that x <> k^2 and y <> k^15) can't be less than A179812(n).

Crossrefs

Programs

  • Mathematica
    d = 15; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx

A179814 Values y for record minima of the positive distance d between the fifteenth power of a positive integer x and the square of an integer y such that d = x^15 - y^2 (x <> k^2 and y <> k^15).

Original entry on oeis.org

181, 3787, 174692, 685700, 2178889, 5931641, 31622776, 64631634, 1691869691, 2597429617, 16328969210, 22469029417, 54353589638, 380636413501, 2506650894908, 11290681881873, 12924394402851, 127673846293724
Offset: 1

Views

Author

Artur Jasinski, Jul 28 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^15.
For d values see A179812.
For x values see A179813.
Conjecture: For any positive number x >= A179813(n), the distance d between the fifteenth power of x and the square of any y (such that x <> k^2 and y <> k^15) can't be less than A179812(n).

Crossrefs

Programs

  • Mathematica
    d = 15; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy
Showing 1-5 of 5 results.