cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179820 a(n) = n-th triangular number mod (n+2).

Original entry on oeis.org

0, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1, 45
Offset: 0

Views

Author

Zak Seidov, Jul 28 2010

Keywords

Crossrefs

Essentially the same as A133622.

Programs

  • Mathematica
    Table[Mod[n(n+1)/2,n+2],{n,0,200}]
    LinearRecurrence[{0,2,0,-1},{0,1,3,1,4},110] (* or *) Join[{0,1},Riffle[Range[3,50],1]] (* Harvey P. Dale, Apr 02 2024 *)

Formula

a(0)=0, afterwards if n is odd then a(n)=1 else a(n)=(n+4)/2
a(0)=0, afterwards a(n)=1 for odd n and n/2+2 for even n.
a(n)= +2*a(n-2) -a(n-4), n>4. a(n) = (6+n*((-1)^n+1)+2*(-1)^n)/4, n>0. G.f.: -x*(-1-3*x+x^2+2*x^3) / ( (x-1)^2*(1+x)^2 ). [From R. J. Mathar, Aug 03 2010]