A179850 Characteristic function of numbers that are congruent to {0, 1, 3, 4} mod 5.
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^8 + x^9 + x^10 + x^11 + x^13 + ... G.f. = q + q^3 + q^7 + q^9 + q^11 + q^13 + q^17 + q^19 + q^21 + q^23 + ...
Links
- Antti Karttunen, Table of n, a(n) for n = 0..4999
- Michael Somos, Rational Function Multiplicative Coefficients
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Programs
-
Mathematica
a[ n_] := Sign @ Mod[n - 2, 5]; (* Michael Somos, Jun 17 2015 *) a[ n_] := {1, 0, 1, 1, 1}[[Mod[n, 5, 1]]]; (* Michael Somos, Jun 17 2015 *)
-
PARI
{a(n) = sign( (n - 2) % 5 )};
-
PARI
{a(n) = [1, 1, 0, 1, 1][n%5 + 1]};
Formula
a(n) = b(2*n + 1) where b(n) is completely multiplicative with b(2) = b(5) = 0, otherwise b(p) = 1.
Coefficient of q^(2*n + 1) in q * (1 - q^4) * (1 - q^12) / ((1 - q^2) * (1 - q^6) * (1 - q^10)).
Euler transform of length 6 sequence [1, -1, 1, 0, 1, -1].
G.f.: (1 + x) * (1 + x^3) / (1 - x^5).
a(n) = a(-n) = a(n + 5) = A011558(n + 3) for all n in Z.
Period 5 sequence [1, 1, 0, 1, 1, ...].
a(n) = A130782(n) mod 2. - Antti Karttunen, Aug 31 2017
Comments