cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179888 Starting with a(1)=2: if m is a term then also 4*m+1 and 4*m+2.

Original entry on oeis.org

2, 9, 10, 37, 38, 41, 42, 149, 150, 153, 154, 165, 166, 169, 170, 597, 598, 601, 602, 613, 614, 617, 618, 661, 662, 665, 666, 677, 678, 681, 682, 2389, 2390, 2393, 2394, 2405, 2406, 2409, 2410, 2453, 2454, 2457, 2458, 2469, 2470, 2473, 2474, 2645, 2646, 2649
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 31 2010

Keywords

Comments

0 -> 01 and 1 -> 10 in binary representation of n;
intersection of A032925 and A053754;
subsequence of A063037;
A000120(a(n))=A023416(a(n))=A070939(n); A070939(a(n))=2*A070939(n).

Examples

			__ n | __ bin(n) || ___ bin(a(n)) | base-4(a(n)) | __ a(n)
-----|-----------||---------------|--------------|---------
.. 1 | ....... 1 || .......... 10 | .......... 2 | ..... 2;
.. 2 | ...... 10 || ........ 1001 | ......... 21 | ..... 9;
.. 3 | ...... 11 || ........ 1010 | ......... 22 | .... 10;
.. 4 | ..... 100 || ...... 100101 | ........ 211 | .... 37;
.. 5 | ..... 101 || ...... 100110 | ........ 212 | .... 38;
.. 6 | ..... 110 || ...... 101001 | ........ 221 | .... 41;
.. 7 | ..... 111 || ...... 101010 | ........ 222 | .... 42;
.. 8 | .... 1000 || .... 10010101 | ....... 2111 | ... 149;
.. 9 | .... 1001 || .... 10010110 | ....... 2112 | ... 150;
. 10 | .... 1010 || .... 10011001 | ....... 2121 | ... 153;
. 11 | .... 1011 || .... 10011010 | ....... 2122 | ... 154;
. 12 | .... 1100 || .... 10100101 | ....... 2211 | ... 165;
. 13 | .... 1101 || .... 10100110 | ....... 2212 | ... 166;
. 14 | .... 1110 || .... 10101001 | ....... 2221 | ... 169;
. 15 | .... 1111 || .... 10101010 | ....... 2222 | ... 170;
. 16 | ... 10000 || .. 1001010101 | ...... 21111 | ... 597;
. 17 | ... 10001 || .. 1001010110 | ...... 21112 | ... 598;
. 18 | ... 10010 || .. 1001011001 | ...... 21121 | ... 601;
. 19 | ... 10011 || .. 1001011010 | ...... 21122 | ... 602;
. 20 | ... 10100 || .. 1001100101 | ...... 21211 | ... 613.
		

Crossrefs

Programs

  • Haskell
    a179888 n = a179888_list !! (n-1)
    a179888_list = 2 : f a179888_list where
      f (x:xs) = x' : x'' : f (xs ++ [x',x'']) where x' = 4*x+1; x'' = x' + 1
    -- Reinhard Zumkeller, Oct 29 2011
    
  • Maple
    a:= n-> 1+(n mod 2)+`if`(n<2, 0, 4*a(iquo(n, 2))):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 15 2024
  • Mathematica
    Union@ Flatten@ NestList[ {4 # + 1, 4 # + 2} &, 2, 5] (* Robert G. Wilson v, Aug 16 2011 *)
  • Python
    def A179888(n): return ((1<<(n.bit_length()<<1))-1)//3+int(bin(n)[2:],4) # Chai Wah Wu, Jul 16 2024

Formula

a(n) = 4*a(floor(n/2)) + n mod 2 + 1 for n>1;
a(n) = SUM((bit(k)+1)*4^k: 0<=k<=L), where bit() and L such that n=SUM(bit(k)*2^k: 0<=k<=L).