A179934 Expansion of x*(4+5*x-13*x^2-x^3+x^4) / ( (1-x)*(1-10*x^2+x^4) ).
4, 9, 36, 85, 352, 837, 3480, 8281, 34444, 81969, 340956, 811405, 3375112, 8032077, 33410160, 79509361, 330726484, 787061529, 3273854676, 7791105925, 32407820272, 77123997717, 320804348040, 763448871241, 3175635660124
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x*(4+5*x-13*x^2-x^3+x^4)/((1-x)*(1-10*x^2+x^4)) )); // G. C. Greubel, Apr 27 2022 -
Maple
r:= sqrt(6); for n from 0 to 20 do a(2*n+1):= round((2 +(7+3*r)*(5+2*r)^n)/4); a(2*n+2):= round((2 +(17+7*r)*(5+2*r)^n)/4); end do; seq(a(n), n = 1..40);
-
Mathematica
LinearRecurrence[{1,10,-10,-1,1},{4,9,36,85,352},30] (* Harvey P. Dale, Dec 23 2012 *)
-
SageMath
def b(n): return ((1+(-1)^n)/2)*chebyshev_U(n//2, 5) def A179934(n): return (b(n) +7*b(n-1) +7*b(n-2) +b(n-3) -2*bool(n==0) +1)/2 [A179934(n) for n in (1..50)] # G. C. Greubel, Apr 27 2022
Formula
a(n) = (1 + sqrt(1 + 24*b(n)*(b(n) - 1)))/2 where b(n) = A181442(n); this is equivalent to the Pell equation A(n)^2 - 6*B(n)^2 = -5 with the two fundamental solutions (7;3) and (17;7) and the solution (5;2) for the unit form; a(n) = (A(n) + 1)/2; b(n) = (B(n) + 1)/2. [corrected by Jason Yuen, Feb 09 2025]
a(n+4) = 10*a(n+2) - a(n) - 4.
a(n+6) = 11*(a(n+4) - a(n+2)) + a(n).
a(2*n+1) = (2 + (7 + 3*r)*(5 + 2*r)^n + (7 - 3*r)*(5 - 2*r)^n)/4, r = sqrt(6).
a(2*n+2) = (2 + (17 + 7*r)*(5 + 2*r)^n + (17 - 7*r)*(5 - 2*r)^n)/4, r = sqrt(6).
From R. J. Mathar, Aug 03 2010: (Start)
a(n) = +a(n-1) +10*a(n-2) -10*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(4+5*x-13*x^2-x^3+x^4) / ( (1-x)*(1-10*x^2+x^4) ). (End)
a(n) = (b(n) +7*b(n-1) +7*b(n-2) +b(n-3) -2*bool(n==0) +1)/2, where b(n) = ((1 + (-1)^n)/2)*ChebyshevU(n/2, 5). - G. C. Greubel, Apr 27 2022
Extensions
Edited by G. C. Greubel, Apr 27 2022
New name using g.f. by R. J. Mathar from Joerg Arndt, Apr 27 2022
Comments