A179943 Triangle read by rows, antidiagonals of an array (r,k), r=(0,1,2,...), generated from 2 X 2 matrices of the form [1,r; 1,(r+1)].
1, 1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 15, 21, 5, 1, 6, 24, 56, 55, 6, 1, 7, 35, 115, 209, 144, 7, 1, 8, 48, 204, 551, 780, 377, 8, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10, 1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11
Offset: 0
Examples
First few rows of the array: 1, 2, 3, 4, 5, 6, 7,... 1, 3, 8, 21, 55, 144, 377,... 1, 4, 15, 56, 209, 780, 2911,... 1, 5, 24, 115, 551, 2640, 12649,... 1, 6, 35, 204, 1189, 6930, 40391,... Taking antidiagonals, we obtain triangle A179943: 1; 1, 2; 1, 3, 3; 1, 4, 8, 4; 1, 5, 15, 21, 5; 1, 6, 24, 56, 55, 6; 1, 7, 35, 115, 209, 144, 7; 1, 8, 48, 204, 551, 780, 377, 8; 1, 9, 63, 329, 1189, 2640, 2911, 987, 9; 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10; 1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11; 1, 12, 120, 980, 6319, 30744, 105937, 235416, 290376, 151316, 17711, 12; ... Examples: Row 1 of the array: (1, 3, 8, 21, 55, 144,...); 144 = term (1,5) of the array = term (2,1) of M^6; where M = the 2 X 2 matrix [1,1; 1,2] and M^6 = [89,144; 144,233]. Term (1,5) of the array = 144 = (r+2)*(term (1,4)) - (term (1,3)) = 3*55 - 21.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
- Wolfdieter Lang, Chebyshev S-polynomials: ten applications.
Programs
-
Maple
invtr:= proc(b) local a; a:= proc(n) option remember; local i; `if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end end: A:= proc(n) A(n):= `if`(n=0, k->k+1, invtr(A(n-1))) end: seq(seq(A(d-k)(k), k=0..d), d=0..10); # Alois P. Heinz, Jul 17 2013 # using observation by Gary W. Adamson
-
Mathematica
a[, 0] = 0; a[, 1] = 1; a[r_, k_] := a[r, k] = (r+1)*a[r, k-1] - a[r, k-2]; Table[a[r-k+2, k], {r, 0, 10}, {k, 1, r+1}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
Formula
Antidiagonals of an array, (r,k), a(k) = (r+2)*a(k-1) - a*(k-2), r=0,1,2,... where (r,k) = term (2,1) in the 2 X 2 matrix [1,r; 1,r+1]^(k+1).
G.f. for row r of array: 1/(1 - (r+2)*x + x^2). - L. Edson Jeffery, Oct 26 2012
Comments