cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179944 Row sums of triangle A179943.

Original entry on oeis.org

1, 3, 7, 17, 47, 148, 518, 1977, 8138, 35879, 168500, 838944, 4409957, 24385913, 141412615, 857611641, 5426144191, 35739397738, 244573978098, 1735854397529, 12757309001222, 96941738970957, 760649367654460, 6155205917196408, 51308394497243469, 440110582561558831
Offset: 0

Views

Author

Gary W. Adamson, Aug 07 2010

Keywords

Examples

			a(4) = 47 since row 4 of triangle A179943 = (1, 5, 15, 21, 5).
		

Crossrefs

Row sums of A179943.
Cf. A341576.

Programs

  • PARI
    seq(n)={Vec(sum(k=0, n, x^k/(1-(k+2)*x+x^2) + O(x*x^n)))} \\ Andrew Howroyd, Apr 13 2021

Formula

G.f.: Sum_{k>=0} x^k/(1 - (k+2)*x + x^2). - Andrew Howroyd, Apr 13 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Apr 13 2021

A323182 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Chebyshev polynomial of the second kind U_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 2, -1, 1, 4, 3, 0, 1, 6, 15, 4, 1, 1, 8, 35, 56, 5, 0, 1, 10, 63, 204, 209, 6, -1, 1, 12, 99, 496, 1189, 780, 7, 0, 1, 14, 143, 980, 3905, 6930, 2911, 8, 1, 1, 16, 195, 1704, 9701, 30744, 40391, 10864, 9, 0, 1, 18, 255, 2716, 20305, 96030, 242047, 235416, 40545, 10, -1
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2019

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 2,    4,     6,      8,     10,      12, ...
  -1, 3,   15,    35,     63,     99,     143, ...
   0, 4,   56,   204,    496,    980,    1704, ...
   1, 5,  209,  1189,   3905,   9701,   20305, ...
   0, 6,  780,  6930,  30744,  96030,  241956, ...
  -1, 7, 2911, 40391, 242047, 950599, 2883167, ...
		

Crossrefs

Mirror of A228161.
Columns 0-19 give A056594, A000027(n+1), A001353(n+1), A001109(n+1), A001090(n+1), A004189(n+1), A004191, A007655(n+2), A077412, A049660(n+1), A075843(n+1), A077421, A077423, A097309, A097311, A097313, A029548, A029547, A144128(n+1), A078987.
Main diagonal gives A323118.
Cf. A179943, A322836 (Chebyshev polynomial of the first kind).

Programs

  • PARI
    T(n,k)  = polchebyshev(n, 2, k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Jan 07 2019
    
  • PARI
    T(n, k) = sum(j=0, n, (2*k-2)^j*binomial(n+1+j, 2*j+1)); \\ Seiichi Manyama, Mar 03 2021

Formula

T(0,k) = 1, T(1,k) = 2 * k and T(n,k) = 2 * k * T(n-1,k) - T(n-2,k) for n > 1.
T(n, k) = Sum_{j=0..n} (2*k-2)^j * binomial(n+1+j,2*j+1). - Seiichi Manyama, Mar 03 2021

A097690 Numerators of the continued fraction n-1/(n-1/...) [n times].

Original entry on oeis.org

1, 3, 21, 209, 2640, 40391, 726103, 15003009, 350382231, 9127651499, 262424759520, 8254109243953, 281944946167261, 10393834843080975, 411313439034311505, 17391182043967249409, 782469083251377707328
Offset: 1

Views

Author

T. D. Noe, Aug 19 2004

Keywords

Comments

The n-th term of the Lucas sequence U(n,1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,1) are relatively prime.

Examples

			a(4) = 209 because 4-1/(4-1/(4-1/4)) = 209/56.
		

Crossrefs

Cf. A084844, A084845, A097691 (denominators), A179943, A323118.

Programs

  • Mathematica
    Table[s=n; Do[s=n-1/s, {n-1}]; Numerator[s], {n, 20}]
    Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == n*y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 1, 20}] (* Benedict W. J. Irwin, Nov 05 2016 *)
  • PARI
    {a(n)=polcoeff(1/(1-n*x+x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012
    
  • PARI
    a(n) = polchebyshev(n, 2, n/2); \\ Seiichi Manyama, Mar 03 2021
    
  • PARI
    a(n) = sum(k=0, n, (n-2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 03 2021
  • Sage
    [lucas_number1(n,n-1,1) for n in range(19)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = [x^n] 1/(1 - n*x + x^2). - Paul D. Hanna, Dec 27 2012
a(n) = y(n,n), where y(m+1,n) = n*y(m,n) - y(m-1,n) with y(0,n)=1, y(1,n)=n. - Benedict W. J. Irwin, Nov 05 2016
From Seiichi Manyama, Mar 03 2021: (Start)
a(n) = U(n,n/2) where U(n,x) is a Chebyshev polynomial of the second kind.
a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (n-2)^k * binomial(n+1+k,2*k+1). (End)
Showing 1-3 of 3 results.