A084844
Denominators of the continued fraction n + 1/(n + 1/...) [n times].
Original entry on oeis.org
1, 2, 10, 72, 701, 8658, 129949, 2298912, 46866034, 1082120050, 27916772489, 795910114440, 24851643870041, 843458630403298, 30918112619119426, 1217359297034666112, 51240457936070359069, 2296067756927144738850, 109127748348241605689981
Offset: 1
a(4) = 72 since 4 + 1/(4 + 1/(4 + 1/4)) = 305/72.
-
A084844 :=proc(n) combinat[fibonacci](n, n) end:
seq(A084844(n), n=1..30); # Zerinvary Lajos, Jan 03 2007
-
myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Denominator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
Table[s=n; Do[s=n+1/s, {n-1}]; Denominator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
Table[Fibonacci[n, n], {n, 1, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
Table[DifferenceRoot[Function[{y,m},{y[2+m]==n*y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
-
from sympy import fibonacci
def a(n):
return fibonacci(n, n)
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017
A084845
Numerators of the continued fraction n+1/(n+1/...) [n times].
Original entry on oeis.org
1, 5, 33, 305, 3640, 53353, 927843, 18674305, 426938895, 10928351501, 309601751184, 9616792908241, 324971855514293, 11868363584907985, 465823816409224245, 19553538801258341377, 874091571490181406680
Offset: 1
a(4) = 305 since 4+1/(4+1/(4+1/4)) = 305/72.
-
A084845 := proc(n)
fibonacci(n+1,n) ;
end proc:
seq(A084845(n),n=1..20) ; # Zerinvary Lajos, Dec 01 2006
-
myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Numerator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
Table[s=n; Do[s=n+1/s, {n-1}]; Numerator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
-
{a(n)=polcoeff(1/(1-n*x-x^2+x*O(x^n)),n)} \\ Paul D. Hanna, Dec 27 2012
-
from sympy import fibonacci
def a117715(n, m): return 0 if n==0 else fibonacci(n, m)
def a(n): return a117715(n + 1, n)
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017
A097691
Denominators of the continued fraction n-1/(n-1/...) [n times].
Original entry on oeis.org
1, 2, 8, 56, 551, 6930, 105937, 1905632, 39424240, 922080050, 24057287759, 692686638072, 21817946138353, 746243766783074, 27543862067299424, 1091228270370045824, 46187969968474139807, 2080128468827570457762, 99318726126650358502921, 5011361251329169946919800
Offset: 1
a(4) = 56 because 4-1/(4-1/(4-1/4)) = 209/56.
- Alois P. Heinz, Table of n, a(n) for n = 1..387
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 8, 22.
- Pascual Jara and Miguel L. Rodríguez, Solving quadratic congruences, Arhimede Math. J. (2020) Vol. 7, No. 2, 105-120.
- Eric Weisstein's World of Mathematics, Lucas Sequence
-
Table[s=n; Do[s=n-1/s, {n-1}]; Denominator[s], {n, 20}]
Table[Abs[Fibonacci[n, I n]], {n, 20}] (* Vladimir Reshetnikov, Oct 16 2018 *)
-
[lucas_number1(n,n,1) for n in range(1,19)] # Zerinvary Lajos, Jul 16 2008
A342167
a(n) = U(n, (n+2)/2) where U(n, x) is a Chebyshev polynomial of the 2nd kind.
Original entry on oeis.org
1, 3, 15, 115, 1189, 15456, 242047, 4435929, 93149001, 2205405829, 58130412911, 1688353631328, 53577891882061, 1844491975179855, 68470281953483775, 2726406212682669391, 115921586524134874897, 5241862216131004082160, 251197634537351883217999
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..386
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
- Wikipedia, Chebyshev polynomials.
-
Table[ChebyshevU[n, (n + 2)/2], {n, 0, 18}] (* Amiram Eldar, Apr 27 2021 *)
-
a(n) = polchebyshev(n, 2, (n+2)/2);
-
a(n) = sum(k=0, n, n^(n-k)*binomial(2*n+1-k, k));
-
a(n) = sum(k=0, n, n^k*binomial(n+1+k, 2*k+1));
A342168
a(n) = U(n, (n+3)/2) where U(n, x) is a Chebyshev polynomial of the 2nd kind.
Original entry on oeis.org
1, 4, 24, 204, 2255, 30744, 499121, 9409960, 202176360, 4878316860, 130651068911, 3846719565780, 123517560398401, 4296240885694576, 160935647131239840, 6460088606857290384, 276655979838719058119, 12591439417867717440180, 606947064800948702246681
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..386
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
- Wikipedia, Chebyshev polynomials.
-
Table[ChebyshevU[n, (n + 3)/2], {n, 0, 18}] (* Amiram Eldar, Apr 27 2021 *)
-
a(n) = polchebyshev(n, 2, (n+3)/2);
-
a(n) = sum(k=0, n, (n+1)^(n-k)*binomial(2*n+1-k, k));
-
a(n) = sum(k=0, n, (n+1)^k*binomial(n+1+k, 2*k+1));
A107995
Chebyshev polynomial of the second kind U[n,x] evaluated at x=n+2.
Original entry on oeis.org
1, 6, 63, 980, 20305, 526890, 16451071, 600940872, 25154396001, 1187422368110, 62418042417599, 3616337930622300, 228977061309711793, 15731733543660288210, 1165677769357309014015, 92665403695822344828176
Offset: 0
a(3)=980 because U[3,x]=8x^3-4x and U[3,5]=8*5^3-4*5=980.
- Rosenblum and Rovnyak, Hardy Classes and Operator Theory,Dover, New York,1985, page 18.
- G. Szego, Orthogonal polynomials, Amer. Math. Soc., Providence, 1939, p. 29.
- G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1966, p. 35.
-
with(orthopoly): seq(U(n,n+2),n=0..17);
-
Table[ChebyshevU[n, n + 2], {n, 0, 15}] (* Amiram Eldar, Mar 05 2021 *)
-
a(n) = polchebyshev(n, 2, n+2); \\ Seiichi Manyama, Mar 05 2021
-
a(n) = sum(k=0, n, (2*n+2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 05 2021
A343259
a(n) = 2 * T(n,n/2) where T(n,x) is a Chebyshev polynomial of the first kind.
Original entry on oeis.org
2, 1, 2, 18, 194, 2525, 39202, 710647, 14760962, 345946302, 9034502498, 260219353691, 8195978831042, 280256592535933, 10340256951198914, 409468947059131650, 17322711762013765634, 779742677038695037937, 37210469265847998489922, 1876572071974094803391179
Offset: 0
-
Table[2*ChebyshevT[n, n/2], {n, 1, 20}] (* Amiram Eldar, Apr 09 2021 *)
-
a(n) = 2*polchebyshev(n, 1, n/2);
-
a(n) = round(2*cos(n*acos(n/2)));
-
a(n) = if(n==0, 2, 2*n*sum(k=0, n, (n-2)^k*binomial(n+k, 2*k)/(n+k)));
A372816
Table read by antidiagonals: T(t,n) = number of t-metered parking functions of length n.
Original entry on oeis.org
1, 1, 3, 1, 3, 21, 1, 3, 16, 209, 1, 3, 16, 163, 2640, 1, 3, 16, 125, 2142, 40391, 1, 3, 16, 125, 1686, 33961, 726103, 1, 3, 16, 125, 1296, 27629, 626569, 15003009, 1, 3, 16, 125, 1296, 21858, 525594, 13198604, 350382231
Offset: 1
Table begins:
1, 3, 21, 209, 2640, 40391, 726103, ...
1, 3, 16, 163, 2142, 33961, 626569, ...
1, 3, 16, 125, 1686, 27629, 525594, ...
1, 3, 16, 125, 1296, 21858, 430062, ...
1, 3, 16, 125, 1296, 16807, 341192, ...
1, 3, 16, 125, 1296, 16807, 262144, ...
...
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024.
A372817
Table read by antidiagonals: T(m,n) = number of 1-metered (m,n)-parking functions.
Original entry on oeis.org
1, 0, 2, 0, 3, 3, 0, 4, 8, 4, 0, 6, 21, 15, 5, 0, 8, 55, 56, 24, 6, 0, 12, 145, 209, 115, 35, 7, 0, 16, 380, 780, 551, 204, 48, 8, 0, 24, 1000, 2912, 2640, 1189, 329, 63, 9, 0, 32, 2625, 10868, 12649, 6930, 2255, 496, 80, 10, 0, 48, 6900, 40569, 60606, 40391, 15456, 3905, 711, 99, 11
Offset: 1
For T(3,2) the 1-metered (3,2)-parking functions are 111, 121, 211, 212.
Table begins:
1, 2, 3, 4, 5, 6, 7, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 4, 21, 56, 115, 204, 329, ...
0, 6, 55, 209, 551, 1189, 2255, ...
0, 8, 145, 780, 2640, 6930, 15456, ...
0, 12, 380, 2912, 12649, 40391, 105937, ...
0, 16, 1000, 10868, 60606, 235416, 726103, ...
...
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024.
A357892
T(n,k) are the values of a variant of the Chebyshev polynomials P(n,x) of order n evaluated at x = k, where T(n,k), n >= 0, k <= n is a triangle read by rows. P(0,x) = 1, P(1,x) = x, P(n,x) = x*P(n-1,x) - P(n-2,x).
Original entry on oeis.org
1, 0, 1, -1, 0, 3, 0, -1, 4, 21, 1, -1, 5, 55, 209, 0, 0, 6, 144, 780, 2640, -1, 1, 7, 377, 2911, 12649, 40391, 0, 1, 8, 987, 10864, 60605, 235416, 726103, 1, 0, 9, 2584, 40545, 290376, 1372105, 4976784, 15003009, 0, -1, 10, 6765, 151316, 1391275, 7997214, 34111385, 118118440, 350382231
Offset: 0
The triangle begins:
1;
0, 1;
-1, 0, 3;
0, -1, 4, 21;
1, -1, 5, 55, 209;
0, 0, 6, 144, 780, 2640;
-1, 1, 7, 377, 2911, 12649, 40391;
0, 1, 8, 987, 10864, 60605, 235416, 726103
-
chp(k,x) = if(k==0, 1, if(k==1, x, x*chp(k-1,x) - chp(k-2,x)));
for (k=0, 9, for(x=0, k, print1(ch(k,x),", ")); print())
Showing 1-10 of 10 results.
Comments