cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A172236 Array A(n,k) = n*A(n,k-1) + A(n,k-2) read by upward antidiagonals, starting A(n,0) = 0, A(n,1) = 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 10, 12, 5, 0, 1, 5, 17, 33, 29, 8, 0, 1, 6, 26, 72, 109, 70, 13, 0, 1, 7, 37, 135, 305, 360, 169, 21, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 0, 1, 10, 82, 528, 2549, 8658, 18901, 23184, 12970, 2378, 89, 0, 1, 11, 101, 747, 4289, 18200, 53353, 98145, 98209, 42837, 5741, 144
Offset: 1

Views

Author

Roger L. Bagula, Jan 29 2010

Keywords

Comments

Equals A073133 with an additional column A(.,0).
If the first column and top row are deleted, antidiagonal reading yields A118243.
Adding a top row of 1's and antidiagonal reading downwards yields A157103.
Antidiagonal sums are 0, 1, 2, 5, 12, 32, 93, 297, 1035, 3911, 15917, 69350, ....
From Jianing Song, Jul 14 2018: (Start)
All rows have strong divisibility, that is, gcd(A(n,k_1), A(n,k_2)) = A(n,gcd(k_1,k_2)) holds for all k_1, k_2 >= 0.
Let E(n,m) be the smallest number l such that m divides A(n,l), we have: for odd primes p that are not divisible by n^2 + 4, E(n,p) divides p - ((n^2+4)/p) if p == 3 (mod 4) and (p - ((n^2+4)/p))/2 if p == 1 (mod 4). E(n,p) = p for odd primes p that are divisible by n^2 + 4. E(n,2) = 2 for even n and 3 for odd n. Here ((n^2+4)/p) is the Legendre symbol. A prime p such that p^2 divides T(n,E(n,p)) is called an n-Wall-Sun-Sun prime.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Let pi(n,m) be the Pisano period of A(n, k) modulo m, i.e, the smallest number l such that A(n, k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p - 1 if ((n^2+4)/p) = 1 and 2(p+1) if ((n^2+4)/p) = -1. pi(n,p) = 4p for odd primes p that are divisible by n^2 + 4. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n, p), so pi(n,p^e) = 4p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1), pi(n,m_2)) if gcd(m_1,m_2) = 1.
If n != 2, the largest possible value of pi(n,m)/m is 4 for even n and 6 for odd n. For even n, pi(n,p^e) = 4p^e; for odd n, pi(n,2p^e) = 12p^e, where p is any odd prime factor of n^2 + 4. For n = 2 it is 8/3, obtained by m = 3^e.
Let z(n,m) be the number of zeros in a period of A(n, k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: z(n,p) = 4 for odd primes p that are divisible by n^2 + 4. For other odd primes p, z(n,p) = 4 if E(n,p) is odd; 1 if E(n,p) is even but not divisible by 4; 2 if E(n,p) is divisible by 4; see the table below. z(n,2) = z(n,4) = 1.
Among all values of z(n,p) when p runs through all odd primes that are not divisible by n^2 + 4, we have:
((n^2+4)/p)...p mod 8....proportion of 1.....proportion of 2.....proportion of 4
......1..........1......1/6 (conjectured)...2/3 (conjectured)...1/6 (conjectured)*
......1..........5......1/2 (conjectured)...........0...........1/2 (conjectured)*
......1.........3,7.............1...................0...................0
.....-1.........1,5.............0...................0...................1
.....-1.........3,7.............0...................1...................0
* The result is that among all odd primes that are not divisible by n^2 + 4, 7/24 of them are with z(n,p) = 1, 5/12 are with z(n,p) = 2 and 7/24 are with z(n,p) = 4 if n^2 + 4 is a twice a square; 1/3 of them are with z(n,p) = 1, 1/3 are with z(n,p) = 2 and 1/3 are with z(n,p) = 4 otherwise. [Corrected by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p; z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
(End)
From Michael A. Allen, Mar 06 2023: (Start)
Removing the first (n=0) row of A352361 gives this sequence.
Row n is the n-metallonacci sequence.
A(n,k) is (for k>0) the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			The array, A(n, k), starts in row n = 1 with columns k >= 0 as
  0      1      1      2      3      5      8
  0      1      2      5     12     29     70
  0      1      3     10     33    109    360
  0      1      4     17     72    305   1292
  0      1      5     26    135    701   3640
  0      1      6     37    228   1405   8658
  0      1      7     50    357   2549  18200
  0      1      8     65    528   4289  34840
  0      1      9     82    747   6805  61992
  0      1     10    101   1020  10301 104030
  0      1     11    122   1353  15005 166408
Antidiagonal triangle, T(n, k), begins as:
  0;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  5,   3;
  0, 1, 4, 10,  12,   5;
  0, 1, 5, 17,  33,  29,    8;
  0, 1, 6, 26,  72, 109,   70,   13;
  0, 1, 7, 37, 135, 305,  360,  169,  21;
  0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34;
		

Crossrefs

Rows n include: A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9), A041041 (n=10), A049666 (n=11), A041061 (n=12), A140455 (n=13), A041085 (n=14), A154597 (n=15), A041113 (n=16), A178765 (n=17), A041145 (n=18), A243399 (n=19), A041181 (n=20). (Note that there are offset shifts for rows n = 5, 7, 8, 10, 12, 14, 16..20.)
Columns k include: A000004 (k=0), A000012 (k=1), A000027 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Entry points for A(n,k) modulo m: A001177 (n=1), A214028 (n=2), A322907 (n=3).
Pisano period for A(n,k) modulo m: A001175 (n=1), A175181 (n=2), A175182 (n=3), A175183 (n=4), A175184 (n=5), A175185 (n=6).
Number of zeros in a period for A(n,k) modulo m: A001176 (n=1), A214027 (n=2), A322906 (n=3).
Sums include: A304357, A304359.
Similar to: A073133.

Programs

  • Magma
    A172236:= func< n,k | k le 1 select k else Evaluate(DicksonSecond(k-1,-1), n-k) >;
    [A172236(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Sep 29 2024
    
  • Mathematica
    A172236[n_,k_]:=Fibonacci[k, n-k];
    Table[A172236[n, k], {n,15}, {k,0,n-1}]//Flatten
  • PARI
    A(n, k) = if (k==0, 0, if (k==1, 1, n*A(n, k-1) + A(n, k-2)));
    tabl(nn) = for(n=1, nn, for (k=0, nn, print1(A(n, k), ", ")); print); \\ Jianing Song, Jul 14 2018 (program from Michel Marcus; see also A316269)
    
  • PARI
    A(n, k) = ([n, 1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
    
  • SageMath
    def A172236(n,k): return sum(binomial(k-j-1,j)*(n-k)^(k-2*j-1) for j in range(1+(k-1)//2))
    flatten([[A172236(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n,k) = (((n + sqrt(n^2 + 4))/2)^k - ((n-sqrt(n^2 + 4))/2)^k)/sqrt(n^2 + 4), n >= 1, k >= 0. - Jianing Song, Jun 27 2018
For n >= 1, Sum_{i=1..k} 1/A(n,2^i) = ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/A(n,2^k)), where u = (n + sqrt(n^2 + 4))/2, v = (n - sqrt(n^2 + 4))/2 are the two roots of the polynomial x^2 - n*x - 1. As a result, Sum_{i>=1} 1/A(n,2^i) = (n^2 + 4 - n*sqrt(n^2 + 4))/(2*n). - Jianing Song, Apr 21 2019
From G. C. Greubel, Sep 29 2024: (Start)
A(n, k) = F_{k}(n) (Fibonacci polynomials F_{n}(x)) (array).
T(n, k) = F_{k}(n-k) (antidiagonal triangle).
Sum_{k=0..n-1} T(n, k) = A304357(n) - (1-(-1)^n)/2.
Sum_{k=0..n-1} (-1)^k*T(n, k) = (-1)*A304359(n) + (1-(-1)^n)/2.
T(2*n, n) = A084844(n).
T(2*n+1, n+1) = A084845(n). (End)

Extensions

More terms from Jianing Song, Jul 14 2018

A352361 Array read by ascending antidiagonals. A(n, k) = Fibonacci(k, n), where Fibonacci(n, x) are the Fibonacci polynomials.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 3, 1, 0, 1, 4, 10, 12, 5, 0, 0, 1, 5, 17, 33, 29, 8, 1, 0, 1, 6, 26, 72, 109, 70, 13, 0, 0, 1, 7, 37, 135, 305, 360, 169, 21, 1, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Comments

From Michael A. Allen, Mar 26 2023: (Start)
Row n is the n-metallonacci sequence for n>0.
A(n,k), for n > 0 and k > 0, is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			Array, A(n,k), starts:
  n\k 0, 1, 2,  3,   4,    5,     6,      7,       8,        9, ...
  -------------------------------------------------------------------------
  [0] 0, 1, 0,  1,   0,    1,     0,      1,       0,        1, ... A000035;
  [1] 0, 1, 1,  2,   3,    5,     8,     13,      21,       34, ... A000045;
  [2] 0, 1, 2,  5,  12,   29,    70,    169,     408,      985, ... A000129;
  [3] 0, 1, 3, 10,  33,  109,   360,   1189,    3927,    12970, ... A006190;
  [4] 0, 1, 4, 17,  72,  305,  1292,   5473,   23184,    98209, ... A001076;
  [5] 0, 1, 5, 26, 135,  701,  3640,  18901,   98145,   509626, ... A052918;
  [6] 0, 1, 6, 37, 228, 1405,  8658,  53353,  328776,  2026009, ... A005668;
  [7] 0, 1, 7, 50, 357, 2549, 18200, 129949,  927843,  6624850, ... A054413;
  [8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025;
  [9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371;
      |  |  |  | A054602 |   A124152;
      |  |  |  A002522   A057721;
      |  |  A001477;
      |  A000012;
      A000004;
Antidiagonals, T(n, k), begin as:
  0;
  0, 1;
  0, 1, 0;
  0, 1, 1,  1;
  0, 1, 2,  2,   0;
  0, 1, 3,  5,   3,   1;
  0, 1, 4, 10,  12,   5,   0;
  0, 1, 5, 17,  33,  29,   8,   1;
  0, 1, 6, 26,  72, 109,  70,  13,  0;
  0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
		

Crossrefs

Other versions of this array are A073133, A157103, A172236.
Rows n: A000035 (n=0), A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9).
Columns k: A000004 (k=0), A000012 (k=1), A001477 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Cf. A084844 (main diagonal), A352362 (Lucas polynomials), A350470 (Jacobsthal polynomials).
Sums include: A304357 (row sums), A304359.
Cf. A084845.

Programs

  • Magma
    A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >;
    [A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
    
  • Maple
    seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
  • Mathematica
    Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* or *)
    A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)];
    Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
  • PARI
    A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ;
    export(A)
    for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
    
  • SageMath
    def A352361(n, k): return lucas_number1(k,n-k,-1)
    flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)

A157103 Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 5, 12, 10, 4, 1, 1, 8, 29, 33, 17, 5, 1, 1, 13, 70, 109, 72, 26, 6, 1, 1, 21, 169, 360, 305, 135, 37, 7, 1, 1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1, 1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 22 2009

Keywords

Comments

From Michael A. Allen, Mar 30 2023: (Start)
Column k is the k-metallonacci sequence for k > 0.
T(n,k) is, for n > 0 and k > 0, the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are k kinds of squares available. (End)

Examples

			Array begins:
  1,  1,   1,    1,     1,     1,      1,      1, ... (A000012);
  1,  1,   2,    3,     4,     5,      6,      7, ... (A000027);
  1,  2,   5,   10,    17,    26,     37,     50, ... (A002522);
  1,  3,  12,   33,    72,   135,    228,    357, ...;
  1,  5,  29,  109,   305,   701,   1405,   2549, ...;
  1,  8,  70,  360,  1292,  3640,   8658,  18200, ...;
  1, 13, 169, 1189,  5473, 18901,  53353, 129949, ...;
  1, 21, 408, 3927, 23184, 98145, 328776, 927843, ...;
  ...
First few rows of the triangle:
  1;
  1,   1;
  1,   1,    1;
  1,   2,    2,     1;
  1,   3,    5,     3,     1;
  1,   5,   12,    10,     4,     1;
  1,   8,   29,    33,    17,     5,     1;
  1,  13,   70,   109,    72,    26,     6,     1;
  1,  21,  169,   360,   305,   135,    37,     7,    1;
  1,  34,  408,  1189,  1292,   701,   228,    50,    8,   1;
  1,  55,  985,  3927,  5473,  3640,  1405,   357,   65,   9,   1;
  1,  89, 2378, 12970, 23184, 18901,  8658,  2549,  528,  82,  10,  1;
  1, 144, 5741, 42837, 98209, 98145, 53353, 18200, 4289, 747, 101, 11, 1;
  ...
Example: Column 3 = (1, 3, 10, 33, 109, 360, ...) = A006190.
		

Crossrefs

Essentially the transpose of A073133, A172236, A352361.

Programs

  • Magma
    A157103:= func< n,k | k eq 0 or k eq n select 1 else Evaluate(DicksonSecond(n, -1), k) >;
    [A157103(n-k, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 11 2022
    
  • Maple
    A157103 := proc(n,k)
        if k = 0 then
            1;
        else
            mul(k-2*I*cos(l*Pi/(n+1)),l=1..n) ;
            combine(%,trig) ;
            round(%) ;
        end if;
    end proc:
    seq( seq(A157103(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Feb 27 2023
  • Mathematica
    (* First program *)
    T[, 0]=1; T[n, n_]=1; T[, ]=0;
    T[n_, k_] /; 0 <= k <= n := k T[n-1, k] + T[n-2, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Aug 07 2018 *)
    (* Second program *)
    T[n_, k_]:= If[k==0 || k==n, 1, Fibonacci[n-k+1, k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A157103(n,k): return 1 if (k==0 or k==n) else lucas_number1(n+1, k, -1)
    flatten([[A157103(n-k, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 11 2022

Formula

A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1 (array).
A(n, 1) = A000045(n+1).
T(n, k) = k*T(n-1, k) + T(n-2, k) with T(n, 0) = T(n, n) = 1 (triangle).
From G. C. Greubel, Jan 11 2022: (Start)
T(n, k) = Fibonacci(n-k+1, k), with T(n, 0) = T(n, n) = 1.
T(2*n, n) = A084845(n) for n >= 1, with T(0, 0) = 1.
T(2*n+1, n+1) = A084844(n). (End)

Extensions

Edited by G. C. Greubel, Jan 11 2022

A084845 Numerators of the continued fraction n+1/(n+1/...) [n times].

Original entry on oeis.org

1, 5, 33, 305, 3640, 53353, 927843, 18674305, 426938895, 10928351501, 309601751184, 9616792908241, 324971855514293, 11868363584907985, 465823816409224245, 19553538801258341377, 874091571490181406680
Offset: 1

Views

Author

Hollie L. Buchanan II, Jun 08 2003

Keywords

Comments

The n-th term of the Lucas sequence U(n,-1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,-1) are relatively prime. - T. D. Noe, Aug 19 2004

Examples

			a(4) = 305 since 4+1/(4+1/(4+1/4)) = 305/72.
		

Crossrefs

Cf. A084844 (denominators).

Programs

  • Maple
    A084845 := proc(n)
        fibonacci(n+1,n) ;
    end proc:
    seq(A084845(n),n=1..20) ; # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Numerator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
    Table[s=n; Do[s=n+1/s, {n-1}]; Numerator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
  • PARI
    {a(n)=polcoeff(1/(1-n*x-x^2+x*O(x^n)),n)} \\ Paul D. Hanna, Dec 27 2012
    
  • Python
    from sympy import fibonacci
    def a117715(n, m): return 0 if n==0 else fibonacci(n, m)
    def a(n): return a117715(n + 1, n)
    print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017

Formula

a(n) = Sum_{k=0..floor(n/2)}* binomial(n-k, k)*n^(n-2k). - Michel Lagneau
a(n) = [x^n] 1/(1 - n*x - x^2). - Paul D. Hanna, Dec 27 2012
a(n) = (s^(n+1) - (-s)^(-n-1))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016
a(n) = A117715(n+1,n). - Alois P. Heinz, Aug 12 2017

A097690 Numerators of the continued fraction n-1/(n-1/...) [n times].

Original entry on oeis.org

1, 3, 21, 209, 2640, 40391, 726103, 15003009, 350382231, 9127651499, 262424759520, 8254109243953, 281944946167261, 10393834843080975, 411313439034311505, 17391182043967249409, 782469083251377707328
Offset: 1

Views

Author

T. D. Noe, Aug 19 2004

Keywords

Comments

The n-th term of the Lucas sequence U(n,1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,1) are relatively prime.

Examples

			a(4) = 209 because 4-1/(4-1/(4-1/4)) = 209/56.
		

Crossrefs

Cf. A084844, A084845, A097691 (denominators), A179943, A323118.

Programs

  • Mathematica
    Table[s=n; Do[s=n-1/s, {n-1}]; Numerator[s], {n, 20}]
    Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == n*y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 1, 20}] (* Benedict W. J. Irwin, Nov 05 2016 *)
  • PARI
    {a(n)=polcoeff(1/(1-n*x+x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012
    
  • PARI
    a(n) = polchebyshev(n, 2, n/2); \\ Seiichi Manyama, Mar 03 2021
    
  • PARI
    a(n) = sum(k=0, n, (n-2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 03 2021
  • Sage
    [lucas_number1(n,n-1,1) for n in range(19)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = [x^n] 1/(1 - n*x + x^2). - Paul D. Hanna, Dec 27 2012
a(n) = y(n,n), where y(m+1,n) = n*y(m,n) - y(m-1,n) with y(0,n)=1, y(1,n)=n. - Benedict W. J. Irwin, Nov 05 2016
From Seiichi Manyama, Mar 03 2021: (Start)
a(n) = U(n,n/2) where U(n,x) is a Chebyshev polynomial of the second kind.
a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (n-2)^k * binomial(n+1+k,2*k+1). (End)

A097691 Denominators of the continued fraction n-1/(n-1/...) [n times].

Original entry on oeis.org

1, 2, 8, 56, 551, 6930, 105937, 1905632, 39424240, 922080050, 24057287759, 692686638072, 21817946138353, 746243766783074, 27543862067299424, 1091228270370045824, 46187969968474139807, 2080128468827570457762, 99318726126650358502921, 5011361251329169946919800
Offset: 1

Views

Author

T. D. Noe, Aug 19 2004

Keywords

Comments

The (n-1)-th term of the Lucas sequence U(n,1). The numerator is the n-th term. Adjacent terms of the sequence U(n,1) are relatively prime.

Examples

			a(4) = 56 because 4-1/(4-1/(4-1/4)) = 209/56.
		

Crossrefs

Cf. A084844, A084845, A097690 (numerators).

Programs

  • Mathematica
    Table[s=n; Do[s=n-1/s, {n-1}]; Denominator[s], {n, 20}]
    Table[Abs[Fibonacci[n, I n]], {n, 20}] (* Vladimir Reshetnikov, Oct 16 2018 *)
  • Sage
    [lucas_number1(n,n,1) for n in range(1,19)] # Zerinvary Lajos, Jul 16 2008

Formula

a(n) = ChebyshevU(n-1,n/2). - Gary Detlefs, Oct 15 2011
a(n) = abs((2^(-n) * (sqrt(4 - n^2) + i*n)^n - 2^n*(-sqrt(4 - n^2) - i*n)^(-n))/sqrt(4 - n^2)), where i is the imaginary unit, for n > 2. - Daniel Suteu, May 31 2017
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 03 2017

A117715 Triangle, read by rows, T(n, k) = Fibonacci(n, k), where Fibonacci(n, x) is the Fibonacci polynomial.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 2, 5, 10, 0, 3, 12, 33, 72, 1, 5, 29, 109, 305, 701, 0, 8, 70, 360, 1292, 3640, 8658, 1, 13, 169, 1189, 5473, 18901, 53353, 129949, 0, 21, 408, 3927, 23184, 98145, 328776, 927843, 2298912, 1, 34, 985, 12970, 98209, 509626, 2026009, 6624850, 18674305, 46866034
Offset: 0

Views

Author

Roger L. Bagula, Apr 13 2006

Keywords

Examples

			Triangle begins as:
  0;
  1,  1;
  0,  1,   2;
  1,  2,   5,   10;
  0,  3,  12,   33,   72;
  1,  5,  29,  109,  305,   701;
  0,  8,  70,  360, 1292,  3640,  8658;
  1, 13, 169, 1189, 5473, 18901, 53353, 129949;
		

References

  • Steven Wolfram, The Mathematica Book, Cambridge University Press, 3rd ed. 1996, page 728

Crossrefs

Cf. A000045, A117716, A049310, A073133, A157103 (antidiagonals).
Main diagonal and first lower diagonal give: A084844, A084845.
Cf. A352361.

Programs

  • Magma
    A117715:= func< n, k | k eq 0 select (n mod 2) else Evaluate(DicksonSecond(n-1, -1), k) >;
    [A117715(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 01 2024
    
  • Maple
    with(combinat):for n from 0 to 9 do seq(fibonacci(n,m), m = 0 .. n) od; # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Table[Fibonacci[n, k], {n,0,12}, {k,0,n}]//Flatten
  • Python
    from sympy import fibonacci
    def T(n, m): return 0 if n==0 else fibonacci(n, m)
    for n in range(21): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Aug 12 2017
    
  • SageMath
    def A117715(n,k): return lucas_number1(n, k, -1)
    flatten([[A117715(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 01 2024

Formula

T(n, 1) = A000045(n).
T(n, 3) = A006190(n).
T(n, 4) = A001076(n).
T(n, 5) = A052918(n-1).
T(5, k) = A057721(k).
T(6, k) = A124152(k).
T(n, k) = (-1)^(n-1)*A352361(n-k, n). - G. C. Greubel, Oct 01 2024

Extensions

Definition simplified by the Assoc. Editors of the OEIS, Nov 17 2009

A304357 Antidiagonal sums of the first quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.

Original entry on oeis.org

0, 1, 1, 3, 5, 13, 32, 94, 297, 1036, 3911, 15918, 69350, 321779, 1582745, 8220349, 44925187, 257563819, 1544896976, 9671289892, 63051738167, 427254561854, 3003872526303, 21876513464296, 164790822258172, 1282198404741305, 10292007232817249, 85126350266370355
Offset: 0

Views

Author

Alois P. Heinz, May 11 2018

Keywords

Comments

Equivalently, antidiagonal sums of the third quadrant of array A(k,m).
It seems that: a(n+1) is the sum of the n-th antidiagonal of triangle A101494; a(n)-(n mod 2) is the sum of the n-th antidiagonal of array A172236; and a(n+1)+(n mod 2) is the sum of row n of triangle A157103. - Mathew Englander, Feb 28 2021

Crossrefs

Programs

  • Maple
    F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]:
    a:= n-> add(F(j, n-j), j=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    F:= proc(n, k) option remember;
          `if`(n<2, n, k*F(n-1, k)+F(n-2, k))
        end:
    a:= n-> add(F(j, n-j), j=0..n):
    seq(a(n), n=0..30);
    # third Maple program:
    a:= n-> add(combinat[fibonacci](j, n-j), j=0..n):
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Fibonacci[j, n - j], {j, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)

Formula

a(n) = Sum_{j=0..n} F_j(n-j).
a(n+1) = Sum_{j = 0..n} Sum_{i = j..floor((n+j)/2)} binomial(i,j)*(n+j-2*i)^j (empirically). - Mathew Englander, Feb 28 2021

A304359 Antidiagonal sums of the second quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 2, 1, -10, 39, -58, -166, 1611, -6311, 10083, 54195, -565257, 2727568, -6102368, -26464605, 394614352, -2515452801, 8797315672, 11441288836, -458369484247, 4097437715969, -21769011878335, 36715605929957, 703213495381553, -10042075731879152
Offset: 0

Views

Author

Alois P. Heinz, May 11 2018

Keywords

Comments

Equivalently, antidiagonal sums of the fourth quadrant of array A(k,m).

Crossrefs

Programs

  • Maple
    F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]:
    a:= n-> add(F(-j, n-j), j=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    F:= proc(n, k) option remember;
          `if`(n<2, n, k*F(n-1, k)+F(n-2, k))
        end:
    a:= n-> add(F(j, j-n), j=0..n):
    seq(a(n), n=0..30);
    # third Maple program:
    a:= n-> add(combinat[fibonacci](j, j-n), j=0..n):
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Fibonacci[j, j - n], {j, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)

Formula

a(n) = Sum_{j=0..n} F_j(j-n).

A320534 a(n) = ((1 + sqrt(4*n^2 + 1))^n + (1 - sqrt(4*n^2 + 1))^n)/2^n.

Original entry on oeis.org

2, 1, 9, 28, 577, 3251, 105193, 857501, 37831169, 403541596, 22550351001, 297238464799, 20106709638337, 315569447182601, 25059144736026633, 456277507970965876, 41600491470425952257, 862007599260004863571, 88733427132980061934777, 2061632980592377284802309
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 14 2018

Keywords

Comments

a(0) = 2 assuming 0^0 = 1, or using the limit for n -> 0 (assuming n is a real variable); the same value for a(0) arises from other formulae for this sequence.

Crossrefs

Programs

  • Mathematica
    Table[2^(1 - n) Hypergeometric2F1[(1 - n)/2, -n/2, 1/2, 4 n^2 + 1], {n, 0, 19}]
    (* or *)
    a[0] = Limit[n^n LucasL[n, 1/n], n -> 0]; (* a[0] = 2 *)
    a[n_] := a[n] = n^n LucasL[n, 1/n];
    Table[a[n], {n, 0, 19}]

Formula

a(n) = 2^(1 - n) * Sum_{k=0..floor(n/2)} binomial(n, 2*k)*(4*n^2 + 1)^k.
a(n) = 2^(1 - n) * hypergeom([(1 - n)/2, -n/2], [1/2], 4*n^2 + 1).
For n > 0, a(n) = n^n * L_n(1/n), where L_n(x) is the Lucas polynomial.
For n > 0, a(n) = 2*(-i*n)^n*cos(n*arcsin(sqrt(4*n^2+1)/(2*n))). - Peter Luschny, Oct 14 2018
Showing 1-10 of 14 results. Next