cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A172236 Array A(n,k) = n*A(n,k-1) + A(n,k-2) read by upward antidiagonals, starting A(n,0) = 0, A(n,1) = 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 10, 12, 5, 0, 1, 5, 17, 33, 29, 8, 0, 1, 6, 26, 72, 109, 70, 13, 0, 1, 7, 37, 135, 305, 360, 169, 21, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 0, 1, 10, 82, 528, 2549, 8658, 18901, 23184, 12970, 2378, 89, 0, 1, 11, 101, 747, 4289, 18200, 53353, 98145, 98209, 42837, 5741, 144
Offset: 1

Views

Author

Roger L. Bagula, Jan 29 2010

Keywords

Comments

Equals A073133 with an additional column A(.,0).
If the first column and top row are deleted, antidiagonal reading yields A118243.
Adding a top row of 1's and antidiagonal reading downwards yields A157103.
Antidiagonal sums are 0, 1, 2, 5, 12, 32, 93, 297, 1035, 3911, 15917, 69350, ....
From Jianing Song, Jul 14 2018: (Start)
All rows have strong divisibility, that is, gcd(A(n,k_1), A(n,k_2)) = A(n,gcd(k_1,k_2)) holds for all k_1, k_2 >= 0.
Let E(n,m) be the smallest number l such that m divides A(n,l), we have: for odd primes p that are not divisible by n^2 + 4, E(n,p) divides p - ((n^2+4)/p) if p == 3 (mod 4) and (p - ((n^2+4)/p))/2 if p == 1 (mod 4). E(n,p) = p for odd primes p that are divisible by n^2 + 4. E(n,2) = 2 for even n and 3 for odd n. Here ((n^2+4)/p) is the Legendre symbol. A prime p such that p^2 divides T(n,E(n,p)) is called an n-Wall-Sun-Sun prime.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Let pi(n,m) be the Pisano period of A(n, k) modulo m, i.e, the smallest number l such that A(n, k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p - 1 if ((n^2+4)/p) = 1 and 2(p+1) if ((n^2+4)/p) = -1. pi(n,p) = 4p for odd primes p that are divisible by n^2 + 4. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n, p), so pi(n,p^e) = 4p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1), pi(n,m_2)) if gcd(m_1,m_2) = 1.
If n != 2, the largest possible value of pi(n,m)/m is 4 for even n and 6 for odd n. For even n, pi(n,p^e) = 4p^e; for odd n, pi(n,2p^e) = 12p^e, where p is any odd prime factor of n^2 + 4. For n = 2 it is 8/3, obtained by m = 3^e.
Let z(n,m) be the number of zeros in a period of A(n, k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: z(n,p) = 4 for odd primes p that are divisible by n^2 + 4. For other odd primes p, z(n,p) = 4 if E(n,p) is odd; 1 if E(n,p) is even but not divisible by 4; 2 if E(n,p) is divisible by 4; see the table below. z(n,2) = z(n,4) = 1.
Among all values of z(n,p) when p runs through all odd primes that are not divisible by n^2 + 4, we have:
((n^2+4)/p)...p mod 8....proportion of 1.....proportion of 2.....proportion of 4
......1..........1......1/6 (conjectured)...2/3 (conjectured)...1/6 (conjectured)*
......1..........5......1/2 (conjectured)...........0...........1/2 (conjectured)*
......1.........3,7.............1...................0...................0
.....-1.........1,5.............0...................0...................1
.....-1.........3,7.............0...................1...................0
* The result is that among all odd primes that are not divisible by n^2 + 4, 7/24 of them are with z(n,p) = 1, 5/12 are with z(n,p) = 2 and 7/24 are with z(n,p) = 4 if n^2 + 4 is a twice a square; 1/3 of them are with z(n,p) = 1, 1/3 are with z(n,p) = 2 and 1/3 are with z(n,p) = 4 otherwise. [Corrected by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p; z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
(End)
From Michael A. Allen, Mar 06 2023: (Start)
Removing the first (n=0) row of A352361 gives this sequence.
Row n is the n-metallonacci sequence.
A(n,k) is (for k>0) the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			The array, A(n, k), starts in row n = 1 with columns k >= 0 as
  0      1      1      2      3      5      8
  0      1      2      5     12     29     70
  0      1      3     10     33    109    360
  0      1      4     17     72    305   1292
  0      1      5     26    135    701   3640
  0      1      6     37    228   1405   8658
  0      1      7     50    357   2549  18200
  0      1      8     65    528   4289  34840
  0      1      9     82    747   6805  61992
  0      1     10    101   1020  10301 104030
  0      1     11    122   1353  15005 166408
Antidiagonal triangle, T(n, k), begins as:
  0;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  5,   3;
  0, 1, 4, 10,  12,   5;
  0, 1, 5, 17,  33,  29,    8;
  0, 1, 6, 26,  72, 109,   70,   13;
  0, 1, 7, 37, 135, 305,  360,  169,  21;
  0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34;
		

Crossrefs

Rows n include: A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9), A041041 (n=10), A049666 (n=11), A041061 (n=12), A140455 (n=13), A041085 (n=14), A154597 (n=15), A041113 (n=16), A178765 (n=17), A041145 (n=18), A243399 (n=19), A041181 (n=20). (Note that there are offset shifts for rows n = 5, 7, 8, 10, 12, 14, 16..20.)
Columns k include: A000004 (k=0), A000012 (k=1), A000027 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Entry points for A(n,k) modulo m: A001177 (n=1), A214028 (n=2), A322907 (n=3).
Pisano period for A(n,k) modulo m: A001175 (n=1), A175181 (n=2), A175182 (n=3), A175183 (n=4), A175184 (n=5), A175185 (n=6).
Number of zeros in a period for A(n,k) modulo m: A001176 (n=1), A214027 (n=2), A322906 (n=3).
Sums include: A304357, A304359.
Similar to: A073133.

Programs

  • Magma
    A172236:= func< n,k | k le 1 select k else Evaluate(DicksonSecond(k-1,-1), n-k) >;
    [A172236(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Sep 29 2024
    
  • Mathematica
    A172236[n_,k_]:=Fibonacci[k, n-k];
    Table[A172236[n, k], {n,15}, {k,0,n-1}]//Flatten
  • PARI
    A(n, k) = if (k==0, 0, if (k==1, 1, n*A(n, k-1) + A(n, k-2)));
    tabl(nn) = for(n=1, nn, for (k=0, nn, print1(A(n, k), ", ")); print); \\ Jianing Song, Jul 14 2018 (program from Michel Marcus; see also A316269)
    
  • PARI
    A(n, k) = ([n, 1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
    
  • SageMath
    def A172236(n,k): return sum(binomial(k-j-1,j)*(n-k)^(k-2*j-1) for j in range(1+(k-1)//2))
    flatten([[A172236(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n,k) = (((n + sqrt(n^2 + 4))/2)^k - ((n-sqrt(n^2 + 4))/2)^k)/sqrt(n^2 + 4), n >= 1, k >= 0. - Jianing Song, Jun 27 2018
For n >= 1, Sum_{i=1..k} 1/A(n,2^i) = ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/A(n,2^k)), where u = (n + sqrt(n^2 + 4))/2, v = (n - sqrt(n^2 + 4))/2 are the two roots of the polynomial x^2 - n*x - 1. As a result, Sum_{i>=1} 1/A(n,2^i) = (n^2 + 4 - n*sqrt(n^2 + 4))/(2*n). - Jianing Song, Apr 21 2019
From G. C. Greubel, Sep 29 2024: (Start)
A(n, k) = F_{k}(n) (Fibonacci polynomials F_{n}(x)) (array).
T(n, k) = F_{k}(n-k) (antidiagonal triangle).
Sum_{k=0..n-1} T(n, k) = A304357(n) - (1-(-1)^n)/2.
Sum_{k=0..n-1} (-1)^k*T(n, k) = (-1)*A304359(n) + (1-(-1)^n)/2.
T(2*n, n) = A084844(n).
T(2*n+1, n+1) = A084845(n). (End)

Extensions

More terms from Jianing Song, Jul 14 2018

A352361 Array read by ascending antidiagonals. A(n, k) = Fibonacci(k, n), where Fibonacci(n, x) are the Fibonacci polynomials.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 3, 1, 0, 1, 4, 10, 12, 5, 0, 0, 1, 5, 17, 33, 29, 8, 1, 0, 1, 6, 26, 72, 109, 70, 13, 0, 0, 1, 7, 37, 135, 305, 360, 169, 21, 1, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Comments

From Michael A. Allen, Mar 26 2023: (Start)
Row n is the n-metallonacci sequence for n>0.
A(n,k), for n > 0 and k > 0, is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			Array, A(n,k), starts:
  n\k 0, 1, 2,  3,   4,    5,     6,      7,       8,        9, ...
  -------------------------------------------------------------------------
  [0] 0, 1, 0,  1,   0,    1,     0,      1,       0,        1, ... A000035;
  [1] 0, 1, 1,  2,   3,    5,     8,     13,      21,       34, ... A000045;
  [2] 0, 1, 2,  5,  12,   29,    70,    169,     408,      985, ... A000129;
  [3] 0, 1, 3, 10,  33,  109,   360,   1189,    3927,    12970, ... A006190;
  [4] 0, 1, 4, 17,  72,  305,  1292,   5473,   23184,    98209, ... A001076;
  [5] 0, 1, 5, 26, 135,  701,  3640,  18901,   98145,   509626, ... A052918;
  [6] 0, 1, 6, 37, 228, 1405,  8658,  53353,  328776,  2026009, ... A005668;
  [7] 0, 1, 7, 50, 357, 2549, 18200, 129949,  927843,  6624850, ... A054413;
  [8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025;
  [9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371;
      |  |  |  | A054602 |   A124152;
      |  |  |  A002522   A057721;
      |  |  A001477;
      |  A000012;
      A000004;
Antidiagonals, T(n, k), begin as:
  0;
  0, 1;
  0, 1, 0;
  0, 1, 1,  1;
  0, 1, 2,  2,   0;
  0, 1, 3,  5,   3,   1;
  0, 1, 4, 10,  12,   5,   0;
  0, 1, 5, 17,  33,  29,   8,   1;
  0, 1, 6, 26,  72, 109,  70,  13,  0;
  0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
		

Crossrefs

Other versions of this array are A073133, A157103, A172236.
Rows n: A000035 (n=0), A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9).
Columns k: A000004 (k=0), A000012 (k=1), A001477 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Cf. A084844 (main diagonal), A352362 (Lucas polynomials), A350470 (Jacobsthal polynomials).
Sums include: A304357 (row sums), A304359.
Cf. A084845.

Programs

  • Magma
    A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >;
    [A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
    
  • Maple
    seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
  • Mathematica
    Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* or *)
    A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)];
    Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
  • PARI
    A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ;
    export(A)
    for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
    
  • SageMath
    def A352361(n, k): return lucas_number1(k,n-k,-1)
    flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)

A157103 Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 5, 12, 10, 4, 1, 1, 8, 29, 33, 17, 5, 1, 1, 13, 70, 109, 72, 26, 6, 1, 1, 21, 169, 360, 305, 135, 37, 7, 1, 1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1, 1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 22 2009

Keywords

Comments

From Michael A. Allen, Mar 30 2023: (Start)
Column k is the k-metallonacci sequence for k > 0.
T(n,k) is, for n > 0 and k > 0, the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are k kinds of squares available. (End)

Examples

			Array begins:
  1,  1,   1,    1,     1,     1,      1,      1, ... (A000012);
  1,  1,   2,    3,     4,     5,      6,      7, ... (A000027);
  1,  2,   5,   10,    17,    26,     37,     50, ... (A002522);
  1,  3,  12,   33,    72,   135,    228,    357, ...;
  1,  5,  29,  109,   305,   701,   1405,   2549, ...;
  1,  8,  70,  360,  1292,  3640,   8658,  18200, ...;
  1, 13, 169, 1189,  5473, 18901,  53353, 129949, ...;
  1, 21, 408, 3927, 23184, 98145, 328776, 927843, ...;
  ...
First few rows of the triangle:
  1;
  1,   1;
  1,   1,    1;
  1,   2,    2,     1;
  1,   3,    5,     3,     1;
  1,   5,   12,    10,     4,     1;
  1,   8,   29,    33,    17,     5,     1;
  1,  13,   70,   109,    72,    26,     6,     1;
  1,  21,  169,   360,   305,   135,    37,     7,    1;
  1,  34,  408,  1189,  1292,   701,   228,    50,    8,   1;
  1,  55,  985,  3927,  5473,  3640,  1405,   357,   65,   9,   1;
  1,  89, 2378, 12970, 23184, 18901,  8658,  2549,  528,  82,  10,  1;
  1, 144, 5741, 42837, 98209, 98145, 53353, 18200, 4289, 747, 101, 11, 1;
  ...
Example: Column 3 = (1, 3, 10, 33, 109, 360, ...) = A006190.
		

Crossrefs

Essentially the transpose of A073133, A172236, A352361.

Programs

  • Magma
    A157103:= func< n,k | k eq 0 or k eq n select 1 else Evaluate(DicksonSecond(n, -1), k) >;
    [A157103(n-k, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 11 2022
    
  • Maple
    A157103 := proc(n,k)
        if k = 0 then
            1;
        else
            mul(k-2*I*cos(l*Pi/(n+1)),l=1..n) ;
            combine(%,trig) ;
            round(%) ;
        end if;
    end proc:
    seq( seq(A157103(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Feb 27 2023
  • Mathematica
    (* First program *)
    T[, 0]=1; T[n, n_]=1; T[, ]=0;
    T[n_, k_] /; 0 <= k <= n := k T[n-1, k] + T[n-2, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Aug 07 2018 *)
    (* Second program *)
    T[n_, k_]:= If[k==0 || k==n, 1, Fibonacci[n-k+1, k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A157103(n,k): return 1 if (k==0 or k==n) else lucas_number1(n+1, k, -1)
    flatten([[A157103(n-k, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 11 2022

Formula

A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1 (array).
A(n, 1) = A000045(n+1).
T(n, k) = k*T(n-1, k) + T(n-2, k) with T(n, 0) = T(n, n) = 1 (triangle).
From G. C. Greubel, Jan 11 2022: (Start)
T(n, k) = Fibonacci(n-k+1, k), with T(n, 0) = T(n, n) = 1.
T(2*n, n) = A084845(n) for n >= 1, with T(0, 0) = 1.
T(2*n+1, n+1) = A084844(n). (End)

Extensions

Edited by G. C. Greubel, Jan 11 2022

A084844 Denominators of the continued fraction n + 1/(n + 1/...) [n times].

Original entry on oeis.org

1, 2, 10, 72, 701, 8658, 129949, 2298912, 46866034, 1082120050, 27916772489, 795910114440, 24851643870041, 843458630403298, 30918112619119426, 1217359297034666112, 51240457936070359069, 2296067756927144738850, 109127748348241605689981
Offset: 1

Views

Author

Hollie L. Buchanan II, Jun 08 2003

Keywords

Comments

The (n-1)-th term of the Lucas sequence U(n,-1). The numerator is the n-th term. Adjacent terms of the sequence U(n,-1) are relatively prime. - T. D. Noe, Aug 19 2004
From Flávio V. Fernandes, Mar 05 2021: (Start)
Also, the n-th term of the n-th metallic sequence (the diagonal through the array A073133, and its equivalents, which is rows formed by sequences beginning with A000045, A000129, A006190, A001076, A052918) as shown below (for n>=1):
0 1 0 1 0 1 ... A000035
0 [1] 1 2 3 5 ... A000045
0 1 [2] 5 12 29 ... A000129
0 1 3 [10] 33 109 ... A006190
0 1 4 17 [72] 305 ... A001076
0 1 5 26 135 [701] ... A052918. (End)

Examples

			a(4) = 72 since 4 + 1/(4 + 1/(4 + 1/4)) = 305/72.
		

Crossrefs

Cf. A084845 (numerators).
Cf. A000045, A097690, A097691, A117715, A290864 (primes in this sequence).

Programs

  • Maple
    A084844 :=proc(n) combinat[fibonacci](n, n) end:
    seq(A084844(n), n=1..30); # Zerinvary Lajos, Jan 03 2007
  • Mathematica
    myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Denominator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
    Table[s=n; Do[s=n+1/s, {n-1}]; Denominator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
    Table[Fibonacci[n, n], {n, 1, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
    Table[DifferenceRoot[Function[{y,m},{y[2+m]==n*y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • Python
    from sympy import fibonacci
    def a(n):
        return fibonacci(n, n)
    print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017

Formula

a(n) = (s^n - (-s)^(-n))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016
a(n) = y(n,n), where y(m+2,n) = n*y(m+1,n) + y(m,n), with y(0,n)=0, y(1,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 03 2017
a(n) = A117715(n,n). - Bobby Jacobs, Aug 12 2017
a(n) = [x^n] x/(1 - n*x - x^2). - Ilya Gutkovskiy, Oct 10 2017
a(n) == 0 (mod n) for even n and 1 (mod n) for odd n. - Flávio V. Fernandes, Dec 08 2020
a(n) == 0 (mod n) for even n and 1 (mod n^2) for odd n; see A065599. - Flávio V. Fernandes, Dec 25 2020
a(n) == 0 (mod 2*(n/2)^2) for even n and 1 (mod n^2) for odd n; see A129194. - Flávio V. Fernandes, Feb 06 2021

A097690 Numerators of the continued fraction n-1/(n-1/...) [n times].

Original entry on oeis.org

1, 3, 21, 209, 2640, 40391, 726103, 15003009, 350382231, 9127651499, 262424759520, 8254109243953, 281944946167261, 10393834843080975, 411313439034311505, 17391182043967249409, 782469083251377707328
Offset: 1

Views

Author

T. D. Noe, Aug 19 2004

Keywords

Comments

The n-th term of the Lucas sequence U(n,1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,1) are relatively prime.

Examples

			a(4) = 209 because 4-1/(4-1/(4-1/4)) = 209/56.
		

Crossrefs

Cf. A084844, A084845, A097691 (denominators), A179943, A323118.

Programs

  • Mathematica
    Table[s=n; Do[s=n-1/s, {n-1}]; Numerator[s], {n, 20}]
    Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == n*y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 1, 20}] (* Benedict W. J. Irwin, Nov 05 2016 *)
  • PARI
    {a(n)=polcoeff(1/(1-n*x+x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012
    
  • PARI
    a(n) = polchebyshev(n, 2, n/2); \\ Seiichi Manyama, Mar 03 2021
    
  • PARI
    a(n) = sum(k=0, n, (n-2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 03 2021
  • Sage
    [lucas_number1(n,n-1,1) for n in range(19)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = [x^n] 1/(1 - n*x + x^2). - Paul D. Hanna, Dec 27 2012
a(n) = y(n,n), where y(m+1,n) = n*y(m,n) - y(m-1,n) with y(0,n)=1, y(1,n)=n. - Benedict W. J. Irwin, Nov 05 2016
From Seiichi Manyama, Mar 03 2021: (Start)
a(n) = U(n,n/2) where U(n,x) is a Chebyshev polynomial of the second kind.
a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (n-2)^k * binomial(n+1+k,2*k+1). (End)

A097691 Denominators of the continued fraction n-1/(n-1/...) [n times].

Original entry on oeis.org

1, 2, 8, 56, 551, 6930, 105937, 1905632, 39424240, 922080050, 24057287759, 692686638072, 21817946138353, 746243766783074, 27543862067299424, 1091228270370045824, 46187969968474139807, 2080128468827570457762, 99318726126650358502921, 5011361251329169946919800
Offset: 1

Views

Author

T. D. Noe, Aug 19 2004

Keywords

Comments

The (n-1)-th term of the Lucas sequence U(n,1). The numerator is the n-th term. Adjacent terms of the sequence U(n,1) are relatively prime.

Examples

			a(4) = 56 because 4-1/(4-1/(4-1/4)) = 209/56.
		

Crossrefs

Cf. A084844, A084845, A097690 (numerators).

Programs

  • Mathematica
    Table[s=n; Do[s=n-1/s, {n-1}]; Denominator[s], {n, 20}]
    Table[Abs[Fibonacci[n, I n]], {n, 20}] (* Vladimir Reshetnikov, Oct 16 2018 *)
  • Sage
    [lucas_number1(n,n,1) for n in range(1,19)] # Zerinvary Lajos, Jul 16 2008

Formula

a(n) = ChebyshevU(n-1,n/2). - Gary Detlefs, Oct 15 2011
a(n) = abs((2^(-n) * (sqrt(4 - n^2) + i*n)^n - 2^n*(-sqrt(4 - n^2) - i*n)^(-n))/sqrt(4 - n^2)), where i is the imaginary unit, for n > 2. - Daniel Suteu, May 31 2017
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 03 2017

A117715 Triangle, read by rows, T(n, k) = Fibonacci(n, k), where Fibonacci(n, x) is the Fibonacci polynomial.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 2, 5, 10, 0, 3, 12, 33, 72, 1, 5, 29, 109, 305, 701, 0, 8, 70, 360, 1292, 3640, 8658, 1, 13, 169, 1189, 5473, 18901, 53353, 129949, 0, 21, 408, 3927, 23184, 98145, 328776, 927843, 2298912, 1, 34, 985, 12970, 98209, 509626, 2026009, 6624850, 18674305, 46866034
Offset: 0

Views

Author

Roger L. Bagula, Apr 13 2006

Keywords

Examples

			Triangle begins as:
  0;
  1,  1;
  0,  1,   2;
  1,  2,   5,   10;
  0,  3,  12,   33,   72;
  1,  5,  29,  109,  305,   701;
  0,  8,  70,  360, 1292,  3640,  8658;
  1, 13, 169, 1189, 5473, 18901, 53353, 129949;
		

References

  • Steven Wolfram, The Mathematica Book, Cambridge University Press, 3rd ed. 1996, page 728

Crossrefs

Cf. A000045, A117716, A049310, A073133, A157103 (antidiagonals).
Main diagonal and first lower diagonal give: A084844, A084845.
Cf. A352361.

Programs

  • Magma
    A117715:= func< n, k | k eq 0 select (n mod 2) else Evaluate(DicksonSecond(n-1, -1), k) >;
    [A117715(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 01 2024
    
  • Maple
    with(combinat):for n from 0 to 9 do seq(fibonacci(n,m), m = 0 .. n) od; # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Table[Fibonacci[n, k], {n,0,12}, {k,0,n}]//Flatten
  • Python
    from sympy import fibonacci
    def T(n, m): return 0 if n==0 else fibonacci(n, m)
    for n in range(21): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Aug 12 2017
    
  • SageMath
    def A117715(n,k): return lucas_number1(n, k, -1)
    flatten([[A117715(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 01 2024

Formula

T(n, 1) = A000045(n).
T(n, 3) = A006190(n).
T(n, 4) = A001076(n).
T(n, 5) = A052918(n-1).
T(5, k) = A057721(k).
T(6, k) = A124152(k).
T(n, k) = (-1)^(n-1)*A352361(n-k, n). - G. C. Greubel, Oct 01 2024

Extensions

Definition simplified by the Assoc. Editors of the OEIS, Nov 17 2009

A135829 a(n) = F(n)*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 3, 10, 53, 434, 5695, 120029, 4086681, 224887484, 20019072757, 2882971364492, 671752346999393, 253253517790135653, 154485317604329747723, 152477261728991251138254, 243506341466516632397539361, 629220538826740707106492847078
Offset: 0

Views

Author

Gary W. Adamson, Nov 29 2007

Keywords

Comments

Essentially the same as A071895. [R. J. Mathar, Oct 28 2008]
From Michel Lagneau, Apr 12 2010: (Start)
Determinant of n+1 X n+1 matrix: ((F(0),-1,0,...,0),(1,F(1),-1,0,...,0),(0,1,F(2),-1,0,...,0),...,(0,0,...,1,F(n)). Each determinant is the numerator of the fraction x(n)/y(n) equal to the continued fraction expansion of the diagonal elements [F(0), F(1), ..., F(n)] of the n+1 X n+1 matrix. The value x(n) is obtained by computing the determinant det(n+1 X n+1) from the last column. The value y(n) is obtained by computing this determinant after removal of the first row and the first column (see example below).
The sequence A001040 give the values of each determinant with numerator of continued fraction given by the expansion of the diagonal elements [n,n-1,...,3,2,1]. The same is true for the sequence A084845 with the expansion of the diagonal elements [n,n,...,n], and the sequence A036246 for the elements[ 0, 1, 4, ..., n^2 ].
Examples:
for n = 0, det[0] = 0; for n = 1, det(([[0,-1],[1,1]]) = 1;
for n = 2, det([[0,-1, 0],[1,1,-1],[0,1,1]]))=1;
for n = 3, det([[0,-1, 0,0],[1,1,-1,0],[0,1,1,-1],[0,0,1,2]])) = 3, and the continued fraction expansion is 3/det(([[1,-1, 0],[1,1,-1],[0,1,2]])) = 5/3 = 0 + 1 + 1/(1 + 1/2) => [0,1,1,2]. (End)
a(n) is the denominator of the continued fraction [F(1), F(2), ..., F(n)] for n > 0. - Seung Ju Lee, Aug 23 2020

Examples

			a(5) = 53 = F(5)*a(4) + a(3) = 5*10 + 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          combinat[fibonacci](n)*a(n-1)+a(n-2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 24 2021
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==Fibonacci[n]*a[n-1]+a[n-2]}, a,{n,0,20}] (* Harvey P. Dale, Apr 26 2012 *)

Formula

a(n) = (-a(n-1)*a(n-4)*a(n-2) - a(n-1)*a(n-3)^2 + a(n-1)^2*a(n-3) + a(n-2)^2*a(n-3) + a(n-1)*a(n-2)^2)/(a(n-2)*a(n-3)). - Robert Israel, Dec 04 2016
a(n) ~ c * ((1 + sqrt(5))/2)^(n*(n+1)/2) / 5^(n/2), where c = 2.25240516839867905756631574518868900987391688308922490621152619277084562178... - Vaclav Kotesovec, Dec 29 2019

Extensions

More terms from Michel Lagneau, Apr 12 2010
Offset changed by N. J. A. Sloane, Apr 21 2010
Replaced n with n+1 where needed. - Seung Ju Lee, Aug 30 2020
Incorrect program removed by Alois P. Heinz, Jan 24 2021

A176232 Determinant of the n X n matrix with rows (1!,-1,0,...,0), (1, 2!,-1,0,...,0), (0,1,3!,-1,0,...,0), ..., (0,0,...,1,n!).

Original entry on oeis.org

1, 1, 3, 19, 459, 55099, 39671739, 199945619659, 8061807424322619, 2925468678338137602379, 10615940739961495538937237819, 423754383328897950597328272711061579, 202979027621555455188781938315330372976764219
Offset: 0

Views

Author

Michel Lagneau, Apr 12 2010

Keywords

Comments

Each determinant is the numerator of the fraction x(n)/y(n) = [1!, 2!, ..., n!] (the simple continued fraction). The value x(n) is obtained by computing the determinant det(n X n) from the last column. The value y(n) is obtained by computing this determinant after removal of the first row and the first column (see example below).
Also denominator of fraction equal to the continued fraction [ 0; 1!, 2!, ... , n! ]. - Seiichi Manyama, Jun 05 2018

Examples

			For n = 1, det[1] = 1.
For n = 2, det([[1,-1],[1,2]]) = 3, and the continued fraction expansion is 3/2 = [1!,2!].
For n = 3, det([[1,-1, 0],[1,2,-1],[0,1,6]]) = 19, and the continued fraction expansion is 19/det([[2,-1],[1,6]]) = 19/13 = [1!,2!,3!].
For n = 4, det([[1,-1,0,0],[1,2,-1,0],[0,1,6,-1],[0,0,1,24]]) = 459, and the continued fraction expansion is 459/det([[2,-1,0],[1,6,-1],[0,1,24]]) = 459/314 = [1!,2!,3!,4!].
		

References

  • J. M. De Koninck, A. Mercier, 1001 problèmes en théorie classique des nombres. Collection ellipses (2004), p.115.

Crossrefs

Programs

  • Maple
    for n from 15 by -1 to 1 do:x0:=n!:for p from n by -1 to 2 do : x0:= (p-1)! + 1/x0 :od:print(x0):od :

Formula

a(0) = 1, a(1) = 1, a(n) = n! * a(n-1) + a(n-2). - Daniel Suteu, Dec 20 2016
a(n) ~ c * BarnesG(n+2), where c = 1.5943186620010986362991550255196986158205795892595646967623357407966... - Vaclav Kotesovec, Jun 05 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 20 2016

A084835 a(n) = A000094(n+4) - A006918(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 10, 18, 30, 49, 75, 112, 163, 231, 322, 441, 595, 792, 1045, 1361, 1760, 2255, 2871, 3626, 4559, 5691, 7077, 8750, 10780, 13216, 16156, 19662, 23868, 28866, 34828, 41882, 50262, 60138
Offset: 1

Views

Author

Jon Perry, Jul 12 2003

Keywords

Comments

Also the number of integer partitions of n - 3 with Durfee square of length > 2, i.e., those with at least 3 parts > 2. The Heinz numbers of these partitions are given by A307515. - Gus Wiseman, Apr 12 2019

Crossrefs

Programs

  • Maple
    A084845 := proc(n)
        A000094(n+4)-A006918(n)
    end proc:
    seq(A084845(n),n=1..40) ; # R. J. Mathar, May 17 2016
  • Mathematica
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]>2&]],{n,0,30}] (* Gus Wiseman, Apr 12 2019 *)
Showing 1-10 of 14 results. Next