cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084844 Denominators of the continued fraction n + 1/(n + 1/...) [n times].

Original entry on oeis.org

1, 2, 10, 72, 701, 8658, 129949, 2298912, 46866034, 1082120050, 27916772489, 795910114440, 24851643870041, 843458630403298, 30918112619119426, 1217359297034666112, 51240457936070359069, 2296067756927144738850, 109127748348241605689981
Offset: 1

Views

Author

Hollie L. Buchanan II, Jun 08 2003

Keywords

Comments

The (n-1)-th term of the Lucas sequence U(n,-1). The numerator is the n-th term. Adjacent terms of the sequence U(n,-1) are relatively prime. - T. D. Noe, Aug 19 2004
From Flávio V. Fernandes, Mar 05 2021: (Start)
Also, the n-th term of the n-th metallic sequence (the diagonal through the array A073133, and its equivalents, which is rows formed by sequences beginning with A000045, A000129, A006190, A001076, A052918) as shown below (for n>=1):
0 1 0 1 0 1 ... A000035
0 [1] 1 2 3 5 ... A000045
0 1 [2] 5 12 29 ... A000129
0 1 3 [10] 33 109 ... A006190
0 1 4 17 [72] 305 ... A001076
0 1 5 26 135 [701] ... A052918. (End)

Examples

			a(4) = 72 since 4 + 1/(4 + 1/(4 + 1/4)) = 305/72.
		

Crossrefs

Cf. A084845 (numerators).
Cf. A000045, A097690, A097691, A117715, A290864 (primes in this sequence).

Programs

  • Maple
    A084844 :=proc(n) combinat[fibonacci](n, n) end:
    seq(A084844(n), n=1..30); # Zerinvary Lajos, Jan 03 2007
  • Mathematica
    myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Denominator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
    Table[s=n; Do[s=n+1/s, {n-1}]; Denominator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
    Table[Fibonacci[n, n], {n, 1, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
    Table[DifferenceRoot[Function[{y,m},{y[2+m]==n*y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • Python
    from sympy import fibonacci
    def a(n):
        return fibonacci(n, n)
    print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017

Formula

a(n) = (s^n - (-s)^(-n))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016
a(n) = y(n,n), where y(m+2,n) = n*y(m+1,n) + y(m,n), with y(0,n)=0, y(1,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 03 2017
a(n) = A117715(n,n). - Bobby Jacobs, Aug 12 2017
a(n) = [x^n] x/(1 - n*x - x^2). - Ilya Gutkovskiy, Oct 10 2017
a(n) == 0 (mod n) for even n and 1 (mod n) for odd n. - Flávio V. Fernandes, Dec 08 2020
a(n) == 0 (mod n) for even n and 1 (mod n^2) for odd n; see A065599. - Flávio V. Fernandes, Dec 25 2020
a(n) == 0 (mod 2*(n/2)^2) for even n and 1 (mod n^2) for odd n; see A129194. - Flávio V. Fernandes, Feb 06 2021

A084845 Numerators of the continued fraction n+1/(n+1/...) [n times].

Original entry on oeis.org

1, 5, 33, 305, 3640, 53353, 927843, 18674305, 426938895, 10928351501, 309601751184, 9616792908241, 324971855514293, 11868363584907985, 465823816409224245, 19553538801258341377, 874091571490181406680
Offset: 1

Views

Author

Hollie L. Buchanan II, Jun 08 2003

Keywords

Comments

The n-th term of the Lucas sequence U(n,-1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,-1) are relatively prime. - T. D. Noe, Aug 19 2004

Examples

			a(4) = 305 since 4+1/(4+1/(4+1/4)) = 305/72.
		

Crossrefs

Cf. A084844 (denominators).

Programs

  • Maple
    A084845 := proc(n)
        fibonacci(n+1,n) ;
    end proc:
    seq(A084845(n),n=1..20) ; # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Numerator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
    Table[s=n; Do[s=n+1/s, {n-1}]; Numerator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
  • PARI
    {a(n)=polcoeff(1/(1-n*x-x^2+x*O(x^n)),n)} \\ Paul D. Hanna, Dec 27 2012
    
  • Python
    from sympy import fibonacci
    def a117715(n, m): return 0 if n==0 else fibonacci(n, m)
    def a(n): return a117715(n + 1, n)
    print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017

Formula

a(n) = Sum_{k=0..floor(n/2)}* binomial(n-k, k)*n^(n-2k). - Michel Lagneau
a(n) = [x^n] 1/(1 - n*x - x^2). - Paul D. Hanna, Dec 27 2012
a(n) = (s^(n+1) - (-s)^(-n-1))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016
a(n) = A117715(n+1,n). - Alois P. Heinz, Aug 12 2017

A124152 a(n) = Fibonacci(6, n).

Original entry on oeis.org

0, 8, 70, 360, 1292, 3640, 8658, 18200, 34840, 61992, 104030, 166408, 255780, 380120, 548842, 772920, 1065008, 1439560, 1912950, 2503592, 3232060, 4121208, 5196290, 6485080, 8017992, 9828200, 11951758, 14427720, 17298260, 20608792, 24408090, 28748408
Offset: 0

Views

Author

Zerinvary Lajos, Dec 01 2006

Keywords

Crossrefs

Cf. A117715 formatted as a triangular array: row 7.
Cf. A000045.

Programs

  • Maple
    with(combinat, fibonacci):seq(fibonacci(6, i), i=0..35);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,8,70,360,1292,3640},40] (* Harvey P. Dale, Apr 18 2019 *)
  • PARI
    concat(0, Vec(2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Apr 06 2017
  • Sage
    [lucas_number1(6,n,-1) for n in range(0, 30)] # Zerinvary Lajos, May 16 2009
    

Formula

From Colin Barker, Apr 06 2017: (Start)
G.f.: 2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6.
a(n) = n*(3 + 4*n^2 + n^4).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A117716 Triangle T(n,k) read by rows: the coefficient [x^n] of x^2/(1-(k+1)*x-x^3) in row n, columns 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 1, 4, 9, 16, 25, 2, 9, 28, 65, 126, 217, 3, 20, 87, 264, 635, 1308, 2415, 4, 44, 270, 1072, 3200, 7884, 16954, 32960, 6, 97, 838, 4353, 16126, 47521, 119022, 264193, 534358, 9, 214, 2601, 17676, 81265, 286434, 835569, 2117656, 4815801, 10050030
Offset: 0

Views

Author

Roger L. Bagula, Apr 13 2006, corrected Apr 15 2006

Keywords

Examples

			Triangle begins as:
  0;
  0,  0;
  1,  1,   1;
  1,  2,   3,    4;
  1,  4,   9,   16,   25;
  2,  9,  28,   65,  126,  217;
  3, 20,  87,  264,  635, 1308,  2415;
  4, 44, 270, 1072, 3200, 7884, 16954, 32960;
		

Crossrefs

Cf. A000930 (column 0), A008998 (column 1), A052541 (column 2), A052927 (column 3), A001093 (row 5), A185065 (row 6), A117715, A117724.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A117716:= func< n,k | Coefficient(R!( x^2/(1-(k+1)*x-x^3) ), n) >;
    [[A117716(n,k): k in [0..n]]: n in [0..m]]; // G. C. Greubel, Jul 23 2023
    
  • Maple
    A117716 := proc(n,m)
            x^2/(1-(m+1)*x-x^3) ;
            if n < 0 then
                    0;
            else
                    coeftayl(%,x=0,n) ;
            end if;
    end proc: # R. J. Mathar, May 14 2013
  • Mathematica
    T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x-x^3), {x,0,n+ 2}], x, n];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A117716(n,k):
        P. = PowerSeriesRing(QQ)
        return P( x^2/(1-(k+1)*x-x^3) ).list()[n]
    flatten([[A117716(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 23 2023

Extensions

Edited by G. C. Greubel, Jul 23 2023

A290864 Numbers k such that the k-th Fibonacci polynomial evaluated at k is prime.

Original entry on oeis.org

2, 5, 71, 8419
Offset: 1

Views

Author

Bobby Jacobs, Aug 12 2017

Keywords

Comments

Numbers k such that A084844(k) = A117715(k,k) is prime.
a(5) > 9200. - Giovanni Resta, Aug 13 2017
Except for a(1), all terms == 1 or 5 (mod 6). - Robert Israel, Aug 13 2017

Examples

			5 is in the sequence because A117715(5,5) = 701 is prime.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(combinat:-fibonacci(t,t)), [2,seq(seq(6*i+j,j=[1,5]),i=0..100)]); # Robert Israel, Aug 13 2017
  • Mathematica
    Select[Range[100], PrimeQ@ Fibonacci[#, #] &] (* Giovanni Resta, Aug 13 2017 *)

Extensions

a(4) from Giovanni Resta, Aug 13 2017
Showing 1-5 of 5 results.