A084844
Denominators of the continued fraction n + 1/(n + 1/...) [n times].
Original entry on oeis.org
1, 2, 10, 72, 701, 8658, 129949, 2298912, 46866034, 1082120050, 27916772489, 795910114440, 24851643870041, 843458630403298, 30918112619119426, 1217359297034666112, 51240457936070359069, 2296067756927144738850, 109127748348241605689981
Offset: 1
a(4) = 72 since 4 + 1/(4 + 1/(4 + 1/4)) = 305/72.
-
A084844 :=proc(n) combinat[fibonacci](n, n) end:
seq(A084844(n), n=1..30); # Zerinvary Lajos, Jan 03 2007
-
myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Denominator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
Table[s=n; Do[s=n+1/s, {n-1}]; Denominator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
Table[Fibonacci[n, n], {n, 1, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
Table[DifferenceRoot[Function[{y,m},{y[2+m]==n*y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
-
from sympy import fibonacci
def a(n):
return fibonacci(n, n)
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017
A084845
Numerators of the continued fraction n+1/(n+1/...) [n times].
Original entry on oeis.org
1, 5, 33, 305, 3640, 53353, 927843, 18674305, 426938895, 10928351501, 309601751184, 9616792908241, 324971855514293, 11868363584907985, 465823816409224245, 19553538801258341377, 874091571490181406680
Offset: 1
a(4) = 305 since 4+1/(4+1/(4+1/4)) = 305/72.
-
A084845 := proc(n)
fibonacci(n+1,n) ;
end proc:
seq(A084845(n),n=1..20) ; # Zerinvary Lajos, Dec 01 2006
-
myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Numerator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
Table[s=n; Do[s=n+1/s, {n-1}]; Numerator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
-
{a(n)=polcoeff(1/(1-n*x-x^2+x*O(x^n)),n)} \\ Paul D. Hanna, Dec 27 2012
-
from sympy import fibonacci
def a117715(n, m): return 0 if n==0 else fibonacci(n, m)
def a(n): return a117715(n + 1, n)
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017
A097690
Numerators of the continued fraction n-1/(n-1/...) [n times].
Original entry on oeis.org
1, 3, 21, 209, 2640, 40391, 726103, 15003009, 350382231, 9127651499, 262424759520, 8254109243953, 281944946167261, 10393834843080975, 411313439034311505, 17391182043967249409, 782469083251377707328
Offset: 1
a(4) = 209 because 4-1/(4-1/(4-1/4)) = 209/56.
- Alois P. Heinz, Table of n, a(n) for n = 1..386
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 3, 8, 10, 22.
- Pascual Jara and Miguel L. Rodríguez, Solving quadratic congruences, Arhimede Math. J. (2020) Vol. 7, No. 2, 105-120.
- Eric Weisstein's World of Mathematics, Lucas Sequence
- Wikipedia, Chebyshev polynomials.
-
Table[s=n; Do[s=n-1/s, {n-1}]; Numerator[s], {n, 20}]
Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == n*y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 1, 20}] (* Benedict W. J. Irwin, Nov 05 2016 *)
-
{a(n)=polcoeff(1/(1-n*x+x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012
-
a(n) = polchebyshev(n, 2, n/2); \\ Seiichi Manyama, Mar 03 2021
-
a(n) = sum(k=0, n, (n-2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 03 2021
-
[lucas_number1(n,n-1,1) for n in range(19)] # Zerinvary Lajos, Jun 25 2008
A342167
a(n) = U(n, (n+2)/2) where U(n, x) is a Chebyshev polynomial of the 2nd kind.
Original entry on oeis.org
1, 3, 15, 115, 1189, 15456, 242047, 4435929, 93149001, 2205405829, 58130412911, 1688353631328, 53577891882061, 1844491975179855, 68470281953483775, 2726406212682669391, 115921586524134874897, 5241862216131004082160, 251197634537351883217999
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..386
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
- Wikipedia, Chebyshev polynomials.
-
Table[ChebyshevU[n, (n + 2)/2], {n, 0, 18}] (* Amiram Eldar, Apr 27 2021 *)
-
a(n) = polchebyshev(n, 2, (n+2)/2);
-
a(n) = sum(k=0, n, n^(n-k)*binomial(2*n+1-k, k));
-
a(n) = sum(k=0, n, n^k*binomial(n+1+k, 2*k+1));
A342168
a(n) = U(n, (n+3)/2) where U(n, x) is a Chebyshev polynomial of the 2nd kind.
Original entry on oeis.org
1, 4, 24, 204, 2255, 30744, 499121, 9409960, 202176360, 4878316860, 130651068911, 3846719565780, 123517560398401, 4296240885694576, 160935647131239840, 6460088606857290384, 276655979838719058119, 12591439417867717440180, 606947064800948702246681
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..386
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
- Wikipedia, Chebyshev polynomials.
-
Table[ChebyshevU[n, (n + 3)/2], {n, 0, 18}] (* Amiram Eldar, Apr 27 2021 *)
-
a(n) = polchebyshev(n, 2, (n+3)/2);
-
a(n) = sum(k=0, n, (n+1)^(n-k)*binomial(2*n+1-k, k));
-
a(n) = sum(k=0, n, (n+1)^k*binomial(n+1+k, 2*k+1));
A372817
Table read by antidiagonals: T(m,n) = number of 1-metered (m,n)-parking functions.
Original entry on oeis.org
1, 0, 2, 0, 3, 3, 0, 4, 8, 4, 0, 6, 21, 15, 5, 0, 8, 55, 56, 24, 6, 0, 12, 145, 209, 115, 35, 7, 0, 16, 380, 780, 551, 204, 48, 8, 0, 24, 1000, 2912, 2640, 1189, 329, 63, 9, 0, 32, 2625, 10868, 12649, 6930, 2255, 496, 80, 10, 0, 48, 6900, 40569, 60606, 40391, 15456, 3905, 711, 99, 11
Offset: 1
For T(3,2) the 1-metered (3,2)-parking functions are 111, 121, 211, 212.
Table begins:
1, 2, 3, 4, 5, 6, 7, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 4, 21, 56, 115, 204, 329, ...
0, 6, 55, 209, 551, 1189, 2255, ...
0, 8, 145, 780, 2640, 6930, 15456, ...
0, 12, 380, 2912, 12649, 40391, 105937, ...
0, 16, 1000, 10868, 60606, 235416, 726103, ...
...
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024.
A343260
a(n) = 2 * T(n,(n+1)/2) where T(n,x) is a Chebyshev polynomial of the first kind.
Original entry on oeis.org
2, 2, 7, 52, 527, 6726, 103682, 1874888, 38925119, 912670090, 23855111399, 687808321212, 21687295069442, 742397047217294, 27420344506901023, 1086932029484351248, 46027034321342899967, 2073668380220713167378, 99042070146811639444802
Offset: 0
-
Table[2*ChebyshevT[n, (n+1)/2], {n, 0, 18}] (* Amiram Eldar, Apr 09 2021 *)
-
a(n) = 2*polchebyshev(n, 1, (n+1)/2);
-
a(n) = round(2*cos(n*acos((n+1)/2)));
-
a(n) = if(n==0, 2, 2*n*sum(k=0, n, (n-1)^k*binomial(n+k, 2*k)/(n+k)));
Showing 1-7 of 7 results.
Comments