cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Spencer Daugherty

Spencer Daugherty's wiki page.

Spencer Daugherty has authored 12 sequences. Here are the ten most recent ones:

A374738 Table read by ascending antidiagonals: T(m,n) = number of (n-1)-metered (m,n)-parking functions.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 6, 16, 15, 5, 1, 8, 27, 50, 24, 6, 1, 12, 48, 125, 108, 35, 7, 1, 16, 96, 257, 432, 196, 48, 8, 1, 24, 162, 540, 1296, 1029, 320, 63, 9, 1, 32, 288, 1200, 3156, 4802, 2048, 486, 80, 10, 1, 48, 576, 3000, 7734, 16807, 12288, 3645, 700, 99, 11
Offset: 1

Author

Spencer Daugherty, Jul 18 2024

Keywords

Examples

			Table begins:
   1,  2,   3,    4,    5,     6,      7, ...
   1,  3,   8,   15,   24,    35,     48, ...
   1,  4,  16,   50,  108,   196,    320, ...
   1,  6,  27,  125,  432,  1029,   2048, ...
   1,  8,  48,  257, 1296,  4802,  12288, ...
   1, 12,  96,  540, 3156, 16807,  65536, ...
   1, 16, 162, 1200, 7734, 47442, 262144, ...
   ...
		

Crossrefs

The n=m+1 diagonal is A007334.

Formula

T(n+k,n) = Sum_{sigma = (sigma_1, ..., sigma_n) in S_n} (( Product_{i=1..n} L_{i}(sigma))( Product_{j=1..k} sigma_j mod n )), where k>0 and L_{i}(sigma) is the largest index h with i= sigma_N for all N in {i-j, i-j+1, ..., i-1, i}.

A372821 Table read by antidiagonals: T(m,n) = number of (m-2)-metered (m,n)-parking functions.

Original entry on oeis.org

0, 1, 0, 0, 4, 0, 0, 4, 9, 0, 0, 0, 21, 16, 0, 0, 0, 27, 56, 25, 0, 0, 0, 0, 163, 115, 36, 0, 0, 0, 0, 257, 483, 204, 49, 0, 0, 0, 0, 0, 1686, 1095, 329, 64, 0, 0, 0, 0, 0, 3156, 5367, 2131, 496, 81, 0, 0, 0, 0, 0, 0, 21858, 13076, 3747, 711, 100, 0, 0, 0, 0, 0, 0, 47442, 73276, 27309, 6123, 980, 121, 0
Offset: 1

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			Table begins:
  0, 0, 0, 0, 0, 0, 0, ...
  1, 4, 9, 16, 25, 36, 49, ...
  0, 4, 21, 56, 115, 204, 329, ...
  0, 0, 27, 163, 483, 1095, 2131, ...
  0, 0, 0, 257, 1686, 5367, 13076, ...
  0, 0, 0, 0, 3156, 21858, 73276, ...
  0, 0, 0, 0, 0, 47442, 341192, ...
  ...
		

Crossrefs

Main diagonal is A328694.

Formula

T(m,n) = (n-m+2)^2*(m-1)^(m-3) + Sum_{k=n-m+3...n} binomial(m-2, n-k)*(n-k+1)^(n-k-1)*[binomial(k+1,2)*(n+m+2)*k^(m-n+k-3) + (k*(n-m+1) - binomial(n-m+2,2))*(k-n+m-1)^(k-n+m-3) + Sum_{j=n-m+2} (jk - binomial(j+1,2))*binomial(m-2-n+k, k-1-j)*(n-m+1)*j^(j+m-2-n)*(k-j)^(k-j-2)].

A372820 Table read by antidiagonals: T(m,n) = number of 4-metered (m,n)-parking functions.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 0, 8, 4, 0, 0, 16, 15, 5, 0, 0, 0, 50, 24, 6, 0, 0, 0, 125, 108, 35, 7, 0, 0, 0, 0, 432, 196, 48, 8, 0, 0, 0, 0, 1296, 1029, 320, 63, 9, 0, 0, 0, 0, 3156, 4802, 2048, 486, 80, 10, 0, 0, 0, 0, 7734, 21858, 12288, 3645, 700, 99, 11
Offset: 1

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			Table begins:
  1, 2,  3,   4,    5,     6,      7, ...
  0, 3,  8,  15,   24,    35,     48, ...
  0, 0, 16,  50,  108,   196,    320, ...
  0, 0,  0, 125,  432,  1029,   2048, ...
  0, 0,  0,   0, 1296,  4802,  12288, ...
  0, 0,  0,   0, 3156, 21858,  73276, ...
  0, 0,  0,   0, 7734, 93526, 430062, ...
  ...
		

Crossrefs

Main diagonal is fourth column of A372816.

A372819 Table read by antidiagonals: T(m,n) = number of 3-metered (m,n)-parking functions.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 0, 8, 4, 0, 0, 16, 15, 5, 0, 0, 0, 50, 24, 6, 0, 0, 0, 125, 108, 35, 7, 0, 0, 0, 257, 432, 196, 48, 8, 0, 0, 0, 540, 1686, 1029, 320, 63, 9, 0, 0, 0, 1200, 6253, 5367, 2048, 486, 80, 10, 0, 0, 0, 3000, 23228, 27629, 13076, 3645, 700, 99, 11
Offset: 1

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			Table beings:
  1, 2,  3,    4,     5,      6,      7, ...
  0, 3,  8,   15,    24,     35,     48, ...
  0, 0, 16,   50,   108,    196,    320, ...
  0, 0,  0,  125,   432,   1029,   2048, ...
  0, 0,  0,  257,  1686,   5367,  13076, ...
  0, 0,  0,  540,  6253,  27629,  83069, ...
  0, 0,  0, 1200, 23228, 140599, 525594, ...
  ...
		

Crossrefs

Main diagonal is third row of A372816.

A372818 Table read by antidiagonals: T(m,n) = number of 2-metered (m,n)-parking functions.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 0, 8, 4, 0, 0, 16, 15, 5, 0, 0, 27, 50, 24, 6, 0, 0, 48, 163, 108, 35, 7, 0, 0, 96, 514, 483, 196, 48, 8, 0, 0, 162, 1665, 2142, 1095, 320, 63, 9, 0, 0, 288, 5411, 9496, 6098, 2131, 486, 80, 10, 0, 0, 576, 17398, 42196, 33961, 14170, 3747, 700, 99, 11
Offset: 1

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			Table begins:
  1, 2,   3,    4,     5,      6,      7, ...
  0, 3,   8,   15,    24,     35,     48, ...
  0, 0,  16,   50,   108,    196,    320, ...
  0, 0,  27,  163,   483,   1095,   2131, ...
  0, 0,  48,  514,  2142,   6098,  14170, ...
  0, 0,  96, 1665,  9496,  33961,  94228, ...
  0, 0, 162, 5411, 42196, 189100, 626569, ...
  ...
		

Crossrefs

Main diagonal is second row of A372816.

A372817 Table read by antidiagonals: T(m,n) = number of 1-metered (m,n)-parking functions.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 4, 8, 4, 0, 6, 21, 15, 5, 0, 8, 55, 56, 24, 6, 0, 12, 145, 209, 115, 35, 7, 0, 16, 380, 780, 551, 204, 48, 8, 0, 24, 1000, 2912, 2640, 1189, 329, 63, 9, 0, 32, 2625, 10868, 12649, 6930, 2255, 496, 80, 10, 0, 48, 6900, 40569, 60606, 40391, 15456, 3905, 711, 99, 11
Offset: 1

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			For T(3,2) the 1-metered (3,2)-parking functions are 111, 121, 211, 212.
Table begins:
  1,  2,    3,     4,     5,      6,      7, ...
  0,  3,    8,    15,    24,     35,     48, ...
  0,  4,   21,    56,   115,    204,    329, ...
  0,  6,   55,   209,   551,   1189,   2255, ...
  0,  8,  145,   780,  2640,   6930,  15456, ...
  0, 12,  380,  2912, 12649,  40391, 105937, ...
  0, 16, 1000, 10868, 60606, 235416, 726103, ...
  ...
		

Crossrefs

Main diagonal is A097690 and first row of A372816.
First, second, and third diagonals above main are A097691, A342167, A342168.
Second column A029744. Second row A005563. Third row A242135.

Formula

T(m,n) = (n*(n+sqrt(n^2 - 4))-2)/(n*(n+sqrt(n^2 - 4))-4)*((n+sqrt(n^2-4))/2)^m + (n*(n-sqrt(n^2 - 4))-2)/(n*(n-sqrt(n^2 - 4))-4)*((n-sqrt(n^2-4))/2)^m.
T(m,n) = n*T(m-1,n) - T(m-2,n) with T(0,n) = 1.

A372816 Table read by antidiagonals: T(t,n) = number of t-metered parking functions of length n.

Original entry on oeis.org

1, 1, 3, 1, 3, 21, 1, 3, 16, 209, 1, 3, 16, 163, 2640, 1, 3, 16, 125, 2142, 40391, 1, 3, 16, 125, 1686, 33961, 726103, 1, 3, 16, 125, 1296, 27629, 626569, 15003009, 1, 3, 16, 125, 1296, 21858, 525594, 13198604, 350382231
Offset: 1

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			Table begins:
  1, 3, 21, 209, 2640, 40391, 726103, ...
  1, 3, 16, 163, 2142, 33961, 626569, ...
  1, 3, 16, 125, 1686, 27629, 525594, ...
  1, 3, 16, 125, 1296, 21858, 430062, ...
  1, 3, 16, 125, 1296, 16807, 341192, ...
  1, 3, 16, 125, 1296, 16807, 262144, ...
  ...
		

Crossrefs

First row is A097690 and main diagonal of A372817.
Second, third and fourth rows are main diagonals of A372818, A372819, and A372820.

A317367 Sprague-Grundy values for the Node-Kayles game played on the scalloped graph where vertices that are 3 away from each other are connected.

Original entry on oeis.org

0, 2, 1, 3, 0, 1, 1, 3, 0, 2, 3, 3, 2, 2, 3, 4, 2, 4, 0, 4, 2, 5, 3, 2, 2, 3, 3, 2, 0, 3, 1, 1, 0, 3, 1, 2, 0, 3, 1, 2, 0, 1, 1, 4, 0, 4, 5, 4, 7, 2, 6, 4, 7, 5, 0, 4, 1, 1, 0, 2, 1, 3, 0, 2, 1, 3, 0, 1, 1, 3, 0, 2, 3, 3, 2, 2, 7, 4, 6, 5, 4, 4, 5, 5, 7, 2, 6, 3, 3, 2, 0, 3, 1, 1, 0, 3, 1, 2, 0, 3, 1, 2, 0, 1, 1
Offset: 4

Keywords

Comments

a(n) is periodic with period 62 and final irregularity at n = 115 (proved).
A071461 gives Sprague-Grundy values for octal games .124 and .1241, where n=21 and n=49 differ.

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Volume 1, A K Peters, 2001.

Crossrefs

Cf. A071461.

Programs

  • Mathematica
    mex[S_] := Block[{i}, i=0; While[MemberQ[S,i], i=i+1]; i];
    c={1}; Do[c = Append[c, mex[ Join[ {c[[n-2]]}, Table[ BitXor[ c[[i]], c[[n-3-i]] ], {i, Ceiling[(n-4)/2]} ] ] ] ], {n,2,1000}];
    b={0}; Do[b = Append[b, mex[ Join[ {b[[n-2]]}, Table[ BitXor[ c[[i]], b[[n-3-i]] ], {i, n-4} ] ] ] ], {n,2,1000}];
    a={}; Do[a = Append[a, mex[ Table[ BitXor[ b[[i]], b[[n-3-i]] ], {i, Ceiling[(n-4)/2]} ] ] ], {n,1000}]; (* Eugene Fiorini, May 14 2019 *)

Formula

Note that mex is the minimum excluded function and (+) is bitwise exclusive or. This is an obvious construction given the symmetry of the graph. We define a three-connected path graph P_{n}(3) as the path graph P_{n} with vertices labeled sequentially from 1 to n and additional edges E'={{i, j} : |i-j|=3}. The Sprague-Grundy value of P_{n}(3) is given by the function a(n).
The B-Variant of length n of P_{n}(3) (denoted P_{n}^{B}(3)) is exactly P_{n}(3) with one additional vertex -1 and one additional edge {-1,2}. The degree of vertex -1 is one. The Sprague-Grundy value of P_{n}^{B}(3) is given by the function b(n).
The C-Variant of length n of P_{n}(3) (denoted P_{n}^{C}(3)) is exactly P_{n}(3) with two additional vertices -1 and n+2 and additional edges {-1,2} and {n-1,n+2}. The degree of vertices -1 and n+2 is one. The Sprague-Grundy value of P_{n}^{C}(3) is given by the function c(n).
Then
a(n) = mex({b(i) (+) b(n-7-i) : -3 <= i <= ceiling(n/2)-4});
b(n) = mex({b(n-2)} union {c(i) (+) b(n-7-i): -3 <= i <= n-4});
c(n) = mex({c(n-2)} union {c(i) (+) c(n-7-i): -3 <= i <= ceiling(n/2)-4}). [Edited and extended by Eugene Fiorini, May 14 2019]

Extensions

Edited by N. J. A. Sloane, Jan 30 2019
More terms from Eugene Fiorini, May 14 2019

A316781 a(n) is the Sprague-Grundy value of the Node-Kayles game played on the graph of n diamonds linked at vertices of degree three.

Original entry on oeis.org

2, 1, 0, 3, 3, 1, 4, 2, 6, 5, 0, 2, 7, 1, 4, 3, 3, 1, 4, 7, 7, 5, 0, 2, 8, 4, 4, 6, 3, 1, 8, 7, 7, 5, 0, 2, 2, 1, 4, 6, 3, 1, 8, 2, 7, 5, 0, 2, 8, 1, 4, 6, 3, 1, 4, 2, 7, 5, 0, 2, 8, 1, 4, 6, 3, 1, 8, 7, 7, 5, 0, 2, 8, 1, 4, 6, 3, 1, 8, 2, 7, 5, 0, 2, 8, 1, 4, 6, 3, 1, 8, 2, 7
Offset: 1

Keywords

Comments

The diamond graph can be constructed on the vertex set {1,2,3,4} with edge set {{1,2}, {1,3}, {1,4}, {2,3}, {3,4}}.
The graph of n linked diamonds has the vertex set {v_0, v_1, ..., v_n, u_1, u_2, ..., u_n, w_1, w_2, ..., w_n} and the edge set {{v_0, v_1}, {v_1, v_2}, ..., {v_{n-1}, v_n}, {v_0, u_1},{v_0, w_1}, {u_1, v_1},{w_1, v_1}, {v_1, u_2}, {v_1, w_2},{u_2, v_2}, {w_2, v_2},...,{v_{n-1}, u_n}, {v_{n-1}, w_n}, {u_n, v_n},{w_n, v_n}}.
In particular, each diamond D_i has vertices v_{i-1}, v_i, u_i, w_i and edges {v_{i-1}, v_i}, {v_{i-1}, u_i}, {v_{i-1}, w_i}, {v_i, u_i}, {v_i, w_i}.
From Wing Hong Tony Wong, Aug 14 2019: (Start)
Starting from the 69th term, this sequence is periodic with period 12. The 69th through 80th terms are 5, 0, 2, 8, 1, 4, 6, 3, 1, 8, 2, 7.
The sequence X(n), as defined in the Formula section, is identical to the sequence A286332, since the Node-Kayles game on the X graph, as defined in the Formula section, is equivalent to the Remove-a-Square game on 2 X n rectangles. (End)

Examples

			For n=1, our recursive formulae yield
X(1) = mex { X(-2) (+) X(-1), X(-1) (+) X(-2), X(-2) (+) 1 (+) X(0), X(-1) (+) 1 (+) X(-1), X(0) (+) 1 (+) X(-2) } = mex { 0, 1, 3 } = 2,
K(1) = mex { K(-2) (+) X(-1), K(-1) (+) X(-2), K(-1) (+) 1 (+) X(-1), K(0) (+) 1 (+) X(-2) } = mex { 0, 1, 3 } = 2, and
a(1) = mex { K(-2) (+) K(-1), K(-1) (+) K(-2), K(-1) (+) 1 (+) K(-1) } = mex { 0, 1 } = 2.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays Volume 1, A. K. Peters, 2001.

Crossrefs

Programs

  • Mathematica
    mex[S_] := Block[{i}, i = 0; While[MemberQ[S, i], i = i + 1]; i];
    a = {}; b = {0, 0, 2}; c = {0, 0, 2}; nn = 1000;
    Do[AppendTo[a,
      mex[Join[Table[BitXor[b[[i]], b[[n - i + 2]]], {i, n + 1}],
        Table[BitXor[b[[j + 1]], 1, b[[n - j + 2]]], {j, n}]]]];
    AppendTo[b,
      mex[Join[Table[BitXor[b[[i]], c[[n - i + 2]]], {i, n + 1}],
        Table[BitXor[b[[j + 1]], 1, c[[n - j + 2]]], {j, n + 1}]]]];
    AppendTo[c,
      mex[Join[Table[BitXor[c[[i]], c[[n - i + 2]]], {i, n + 1}],
        Table[BitXor[c[[j + 1]], 1, c[[n - j + 2]]], {j, 0, n + 1}]]]],
    {n, nn}]

Formula

The Sprague-Grundy value of the Node-Kayles game on the graph of n linked diamonds, a(n), can be calculated recursively using the Sprague-Grundy values of the Node-Kayles game on two variants, K and X, of the linked diamond graph. We will denote these variant values as K(n) and X(n), and provide their recursive definition as well.
The K variant graph of n linked diamonds has the vertex set {v_0, v_1, ..., v_n, u_1, u_2, ..., u_n, u_{n+1}, w_1, w_2, ..., w_n, w_{n+1}} and the edge set {{v_0, v_1}, {v_1, v_2}, ..., {v_{n-1}, v_n}, {v_0, u_1}, {v_0, w_1}, {u_1, v_1}, {w_1, v_1}, {v_1, u_2}, {v_1, w_2}, {u_2, v_2}, {w_2, v_2},...,{v_{n-1}, u_n}, {v_{n-1}, w_n}, {u_n, v_n}, {w_n, v_n}, {v_n, u_{n+1}}, {v_n, w_{n+1}}}.
The X variant graph of n linked diamonds has the vertex set {v_0, v_1, ..., v_n, u_0, u_1, u_2, ..., u_n, u_{n+1}, w_0, w_1, w_2, ..., w_n, w_{n+1}} with edge set {{v_0, v_1}, {v_1, v_2}, ..., {v_{n-1}, v_n}, {u_0, v_0}, {w_0, v_0}, {v_0, u_1}, {v_0, w_1}, {u_1, v_1}, {w_1, v_1}, {v_1, u_2}, {v_1, w_2}, {u_2, v_2}, {w_2, v_2},...,{v_{n-1}, u_n}, {v_{n-1}, w_n}, {u_n, v_n}, {w_n, v_n}, {v_n, u_{n+1}}, {v_n, w_{n+1}}}.
In the following recursive formulae, "mex{}" is used to denote the "minimum-excluded nonnegative integer" and "(+)" represents the bitwise exclusive OR. To simplify the recursive formulae, we further define K(-2) = K(-1) = X(-2) = X(-1) = 0 and K(0) = X(0) = 2, which also serve as our base cases.
a(n) = mex { K(i-3) (+) K(n-i-1), K(j-2) (+) 1 (+) K(n-j-1) : 1 <= i <= n+1, 1 <= j <= n }.
K(n) = mex { K(i-3) (+) X(n-i-1), K(j-2) (+) 1 (+) X(n-j-1) : 1 <= i <= n+1, 1 <= j <= n+1 }.
X(n) = mex { X(i-3) (+) X(n-i-1), X(j-2) (+) 1 (+) X(n-j-1) : 1 <= i <= n+1, 0 <= j <= n+1 }.

Extensions

Corrected by Wing Hong Tony Wong, Aug 14 2019

A316629 a(n) is the Sprague-Grundy value of the Node-Kayles game on the semi-regular graph of n linked 4-cycles with vertex set {u_1, u_2, ..., u_n, u_{n+1}, v_1, w_1, v_2, w_2, ..., v_n, w_n}. In this graph, u_1, u_2, ..., u_n, and u_{n+1} form a path, and additional edges are given by {u_i, v_i}, {v_i, w_i}, and {w_i, u_{i+1}} for all i=1,2,...,n.

Original entry on oeis.org

0, 1, 3, 4, 2, 3, 1, 2, 0, 4, 6, 5, 7, 3, 2, 7, 6, 2, 0, 2, 1, 3, 2, 4, 3, 5, 0, 3, 1, 2, 10, 1, 11, 2, 1, 9, 7, 8, 4, 9, 5, 3, 1, 2, 7, 4, 9, 7, 6, 9, 7, 8, 4, 3, 5, 2, 6, 5, 10, 4, 9, 14, 0, 4, 11, 8, 13, 3, 7, 2, 3, 9, 5, 3, 4, 5, 7, 4, 9, 7, 8, 9, 7, 8, 6, 9, 5, 10, 16, 5
Offset: 1

Keywords

Comments

A similar graph is given by n linked 4-cycles with vertex set {u_1, u_2, ..., u_n, u_{n+1}, v_1, w_1, v_2, w_2, ..., v_n, w_n}. In this graph, edges are given by {u_i, v_i}, {u_i, w_i}, {v_i, u_{i+1}}, and {w_i, u_{i+1}} for all i=1,2,...,n. The Sprague-Grundy value of the Node-Kayles game played on this graph is 0 if n is odd and 1 otherwise.

Examples

			For n=4, a(4)=mex{a(3), a(2)+b(0), a(1)+b(1), b(1), b(2)+1, b(0)+b(0)}=mex{3, 1, 2, 0}=4.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Volume 1, A K Peters, 2001.

Programs

  • Python
    # See Rainville link.

Formula

We define b(n) and c(n), as well as their recurrence relations, to be used in the recurrence relation for a(n).
Let b(n) be the Sprague-Grundy value of the Node-Kayles game on the graph of n linked 4-cycles with vertex set {u_1, u_2, ..., u_n, u_{n+1}, u_{n+2}, u_{n+3}, v_1, w_1, v_2, w_2, ..., v_n, w_n}. In this graph, u_1, u_2, ..., u_n, u_{n+1}, u_{n+2}, and u_{n+3} form a path, and additional edges are given by {u_i, v_i}, {v_i, w_i}, and {w_i, u_{i+1}} for all i=1,2,...,n.
Let c(n) be the Sprague-Grundy value of the Node-Kayles game on the graph of n linked 4-cycles with vertex set {u_{-1}, u_0, u_1, u_2, ..., u_n, u_{n+1}, u_{n+2}, u_{n+3}, v_1, w_1, v_2, w_2, ..., v_n, w_n}. In this graph, u_{-1}, u_0, u_1, u_2, ..., u_n, u_{n+1}, u_{n+2}, and u_{n+3} form a path, and additional edges are given by {u_i, v_i}, {v_i, w_i}, and {w_i, u_{i+1}} for all i=1,2,...,n.
In the following recurrence relations, '+' is the bitwise XOR operator.
Recurrence relation for a(n):
a(n) = mex{a(n-1), a(n-2)+b(0), a(n-3)+b(1), ..., a(1)+b(n-3), b(n-3), b(n-2)+1, b(n-4)+b(0), b(n-5)+b(1), ..., b(n-4-floor((n-4)/2))+b(floor((n-4)/2))}, where mex is the minimum excluded function.
Initial conditions for a(n): a(1)=0, a(2)=1, a(3)=3.
Recurrence relation for b(n):
b(n) = mex{a(n), a(n-1)+c(-1), b(n-1), b(n-2), c(n-2)+1, c(n-3), a(1)+c(n-3), a(n-2)+c(0), a(n-3)+c(1), ..., a(2)+c(n-4), b(n-2)+b(0), b(n-3)+b(1), ..., b(floor((n-1)/2))+b(n-2-floor((n-1)/2)), b(n-3)+c(-1), b(n-4)+c(0), b(0)+c(n-4), b(1)+c(n-5), ..., b(n-5)+c(1)}
Initial conditions for b(n): b(0)=2, b(1)=1, b(2)=3, b(3)=2, b(4)=5.
Recurrence relation for c(n):
c(n) = mex{c(n-2), b(n-1)+c(-1), b(n), c(n-1), b(n-2)+c(0), b(n-3)+c(1), ..., b(floor(n/2))+c(n-2-floor((n-2)/2)), c(n-3)+c(-1), c(n-4)+c(0), ..., c(floor((n-3)/2))+c(n-4-floor((n-3)/2))}
Note that c(-1), for convenience, refers to the Sprague-Grundy value of the Node-Kayles game on the path graph on two vertices.
Initial conditions for c(n): c(-1)=1, c(0)=3, c(1)=0, c(2)=1.