cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A172236 Array A(n,k) = n*A(n,k-1) + A(n,k-2) read by upward antidiagonals, starting A(n,0) = 0, A(n,1) = 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 10, 12, 5, 0, 1, 5, 17, 33, 29, 8, 0, 1, 6, 26, 72, 109, 70, 13, 0, 1, 7, 37, 135, 305, 360, 169, 21, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 0, 1, 10, 82, 528, 2549, 8658, 18901, 23184, 12970, 2378, 89, 0, 1, 11, 101, 747, 4289, 18200, 53353, 98145, 98209, 42837, 5741, 144
Offset: 1

Views

Author

Roger L. Bagula, Jan 29 2010

Keywords

Comments

Equals A073133 with an additional column A(.,0).
If the first column and top row are deleted, antidiagonal reading yields A118243.
Adding a top row of 1's and antidiagonal reading downwards yields A157103.
Antidiagonal sums are 0, 1, 2, 5, 12, 32, 93, 297, 1035, 3911, 15917, 69350, ....
From Jianing Song, Jul 14 2018: (Start)
All rows have strong divisibility, that is, gcd(A(n,k_1), A(n,k_2)) = A(n,gcd(k_1,k_2)) holds for all k_1, k_2 >= 0.
Let E(n,m) be the smallest number l such that m divides A(n,l), we have: for odd primes p that are not divisible by n^2 + 4, E(n,p) divides p - ((n^2+4)/p) if p == 3 (mod 4) and (p - ((n^2+4)/p))/2 if p == 1 (mod 4). E(n,p) = p for odd primes p that are divisible by n^2 + 4. E(n,2) = 2 for even n and 3 for odd n. Here ((n^2+4)/p) is the Legendre symbol. A prime p such that p^2 divides T(n,E(n,p)) is called an n-Wall-Sun-Sun prime.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Let pi(n,m) be the Pisano period of A(n, k) modulo m, i.e, the smallest number l such that A(n, k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p - 1 if ((n^2+4)/p) = 1 and 2(p+1) if ((n^2+4)/p) = -1. pi(n,p) = 4p for odd primes p that are divisible by n^2 + 4. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n, p), so pi(n,p^e) = 4p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1), pi(n,m_2)) if gcd(m_1,m_2) = 1.
If n != 2, the largest possible value of pi(n,m)/m is 4 for even n and 6 for odd n. For even n, pi(n,p^e) = 4p^e; for odd n, pi(n,2p^e) = 12p^e, where p is any odd prime factor of n^2 + 4. For n = 2 it is 8/3, obtained by m = 3^e.
Let z(n,m) be the number of zeros in a period of A(n, k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: z(n,p) = 4 for odd primes p that are divisible by n^2 + 4. For other odd primes p, z(n,p) = 4 if E(n,p) is odd; 1 if E(n,p) is even but not divisible by 4; 2 if E(n,p) is divisible by 4; see the table below. z(n,2) = z(n,4) = 1.
Among all values of z(n,p) when p runs through all odd primes that are not divisible by n^2 + 4, we have:
((n^2+4)/p)...p mod 8....proportion of 1.....proportion of 2.....proportion of 4
......1..........1......1/6 (conjectured)...2/3 (conjectured)...1/6 (conjectured)*
......1..........5......1/2 (conjectured)...........0...........1/2 (conjectured)*
......1.........3,7.............1...................0...................0
.....-1.........1,5.............0...................0...................1
.....-1.........3,7.............0...................1...................0
* The result is that among all odd primes that are not divisible by n^2 + 4, 7/24 of them are with z(n,p) = 1, 5/12 are with z(n,p) = 2 and 7/24 are with z(n,p) = 4 if n^2 + 4 is a twice a square; 1/3 of them are with z(n,p) = 1, 1/3 are with z(n,p) = 2 and 1/3 are with z(n,p) = 4 otherwise. [Corrected by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p; z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
(End)
From Michael A. Allen, Mar 06 2023: (Start)
Removing the first (n=0) row of A352361 gives this sequence.
Row n is the n-metallonacci sequence.
A(n,k) is (for k>0) the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			The array, A(n, k), starts in row n = 1 with columns k >= 0 as
  0      1      1      2      3      5      8
  0      1      2      5     12     29     70
  0      1      3     10     33    109    360
  0      1      4     17     72    305   1292
  0      1      5     26    135    701   3640
  0      1      6     37    228   1405   8658
  0      1      7     50    357   2549  18200
  0      1      8     65    528   4289  34840
  0      1      9     82    747   6805  61992
  0      1     10    101   1020  10301 104030
  0      1     11    122   1353  15005 166408
Antidiagonal triangle, T(n, k), begins as:
  0;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  5,   3;
  0, 1, 4, 10,  12,   5;
  0, 1, 5, 17,  33,  29,    8;
  0, 1, 6, 26,  72, 109,   70,   13;
  0, 1, 7, 37, 135, 305,  360,  169,  21;
  0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34;
		

Crossrefs

Rows n include: A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9), A041041 (n=10), A049666 (n=11), A041061 (n=12), A140455 (n=13), A041085 (n=14), A154597 (n=15), A041113 (n=16), A178765 (n=17), A041145 (n=18), A243399 (n=19), A041181 (n=20). (Note that there are offset shifts for rows n = 5, 7, 8, 10, 12, 14, 16..20.)
Columns k include: A000004 (k=0), A000012 (k=1), A000027 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Entry points for A(n,k) modulo m: A001177 (n=1), A214028 (n=2), A322907 (n=3).
Pisano period for A(n,k) modulo m: A001175 (n=1), A175181 (n=2), A175182 (n=3), A175183 (n=4), A175184 (n=5), A175185 (n=6).
Number of zeros in a period for A(n,k) modulo m: A001176 (n=1), A214027 (n=2), A322906 (n=3).
Sums include: A304357, A304359.
Similar to: A073133.

Programs

  • Magma
    A172236:= func< n,k | k le 1 select k else Evaluate(DicksonSecond(k-1,-1), n-k) >;
    [A172236(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Sep 29 2024
    
  • Mathematica
    A172236[n_,k_]:=Fibonacci[k, n-k];
    Table[A172236[n, k], {n,15}, {k,0,n-1}]//Flatten
  • PARI
    A(n, k) = if (k==0, 0, if (k==1, 1, n*A(n, k-1) + A(n, k-2)));
    tabl(nn) = for(n=1, nn, for (k=0, nn, print1(A(n, k), ", ")); print); \\ Jianing Song, Jul 14 2018 (program from Michel Marcus; see also A316269)
    
  • PARI
    A(n, k) = ([n, 1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
    
  • SageMath
    def A172236(n,k): return sum(binomial(k-j-1,j)*(n-k)^(k-2*j-1) for j in range(1+(k-1)//2))
    flatten([[A172236(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n,k) = (((n + sqrt(n^2 + 4))/2)^k - ((n-sqrt(n^2 + 4))/2)^k)/sqrt(n^2 + 4), n >= 1, k >= 0. - Jianing Song, Jun 27 2018
For n >= 1, Sum_{i=1..k} 1/A(n,2^i) = ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/A(n,2^k)), where u = (n + sqrt(n^2 + 4))/2, v = (n - sqrt(n^2 + 4))/2 are the two roots of the polynomial x^2 - n*x - 1. As a result, Sum_{i>=1} 1/A(n,2^i) = (n^2 + 4 - n*sqrt(n^2 + 4))/(2*n). - Jianing Song, Apr 21 2019
From G. C. Greubel, Sep 29 2024: (Start)
A(n, k) = F_{k}(n) (Fibonacci polynomials F_{n}(x)) (array).
T(n, k) = F_{k}(n-k) (antidiagonal triangle).
Sum_{k=0..n-1} T(n, k) = A304357(n) - (1-(-1)^n)/2.
Sum_{k=0..n-1} (-1)^k*T(n, k) = (-1)*A304359(n) + (1-(-1)^n)/2.
T(2*n, n) = A084844(n).
T(2*n+1, n+1) = A084845(n). (End)

Extensions

More terms from Jianing Song, Jul 14 2018

A352361 Array read by ascending antidiagonals. A(n, k) = Fibonacci(k, n), where Fibonacci(n, x) are the Fibonacci polynomials.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 3, 1, 0, 1, 4, 10, 12, 5, 0, 0, 1, 5, 17, 33, 29, 8, 1, 0, 1, 6, 26, 72, 109, 70, 13, 0, 0, 1, 7, 37, 135, 305, 360, 169, 21, 1, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Comments

From Michael A. Allen, Mar 26 2023: (Start)
Row n is the n-metallonacci sequence for n>0.
A(n,k), for n > 0 and k > 0, is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			Array, A(n,k), starts:
  n\k 0, 1, 2,  3,   4,    5,     6,      7,       8,        9, ...
  -------------------------------------------------------------------------
  [0] 0, 1, 0,  1,   0,    1,     0,      1,       0,        1, ... A000035;
  [1] 0, 1, 1,  2,   3,    5,     8,     13,      21,       34, ... A000045;
  [2] 0, 1, 2,  5,  12,   29,    70,    169,     408,      985, ... A000129;
  [3] 0, 1, 3, 10,  33,  109,   360,   1189,    3927,    12970, ... A006190;
  [4] 0, 1, 4, 17,  72,  305,  1292,   5473,   23184,    98209, ... A001076;
  [5] 0, 1, 5, 26, 135,  701,  3640,  18901,   98145,   509626, ... A052918;
  [6] 0, 1, 6, 37, 228, 1405,  8658,  53353,  328776,  2026009, ... A005668;
  [7] 0, 1, 7, 50, 357, 2549, 18200, 129949,  927843,  6624850, ... A054413;
  [8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025;
  [9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371;
      |  |  |  | A054602 |   A124152;
      |  |  |  A002522   A057721;
      |  |  A001477;
      |  A000012;
      A000004;
Antidiagonals, T(n, k), begin as:
  0;
  0, 1;
  0, 1, 0;
  0, 1, 1,  1;
  0, 1, 2,  2,   0;
  0, 1, 3,  5,   3,   1;
  0, 1, 4, 10,  12,   5,   0;
  0, 1, 5, 17,  33,  29,   8,   1;
  0, 1, 6, 26,  72, 109,  70,  13,  0;
  0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
		

Crossrefs

Other versions of this array are A073133, A157103, A172236.
Rows n: A000035 (n=0), A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9).
Columns k: A000004 (k=0), A000012 (k=1), A001477 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Cf. A084844 (main diagonal), A352362 (Lucas polynomials), A350470 (Jacobsthal polynomials).
Sums include: A304357 (row sums), A304359.
Cf. A084845.

Programs

  • Magma
    A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >;
    [A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
    
  • Maple
    seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
  • Mathematica
    Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* or *)
    A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)];
    Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
  • PARI
    A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ;
    export(A)
    for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
    
  • SageMath
    def A352361(n, k): return lucas_number1(k,n-k,-1)
    flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)

A101494 Triangle, read by rows, where T(n,k) = Sum_{j=0..n-k-1} C(j+k,j)*T(n-1,j+k) for n>k>=0 with T(n,n)=1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 23, 23, 13, 5, 1, 1, 66, 73, 44, 19, 6, 1, 1, 210, 253, 162, 73, 26, 7, 1, 1, 733, 948, 643, 302, 111, 34, 8, 1, 1, 2781, 3817, 2724, 1337, 506, 159, 43, 9, 1, 1, 11378, 16433, 12259, 6266, 2457, 788, 218, 53, 10, 1, 1, 49864, 75295
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Column 0 equals row sums (A026898) shift right.
T(n,k) is the number of m-tuples of nonnegative integers satisfying these two criteria: (i) there are exactly k 0’s, and (ii) the remaining m-k elements are positive integers less than or equal to n-m. - Mathew Englander, Feb 25 2021

Examples

			4th row sum = 23 = (5-0)^0+(5-1)^1+(5-2)^2+(5-3)^3+(5-4)^4.
5th row sum = 66 = (6-0)^0+(6-1)^1+(6-2)^2+(6-3)^3+(6-4)^4+(6-5)^5.
T(6,0) = 66 = 1*23 + 1*23 + 1*13 + 1*5 + 1*1 + 1*1.
T(6,1) = 73 = 1*23 + 2*13 + 3*5 + 4*1 + 5*1.
T(6,2) = 44 = 1*13 + 3*5 + 6*1 + 10*1.
Rows begin:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 8, 4, 1, 1;
23, 23, 13, 5, 1, 1;
66, 73, 44, 19, 6, 1, 1;
210, 253, 162, 73, 26, 7, 1, 1;
733, 948, 643, 302, 111, 34, 8, 1, 1;
2781, 3817, 2724, 1337, 506, 159, 43, 9, 1, 1;
11378, 16433, 12259, 6266, 2457, 788, 218, 53, 10, 1, 1;
49864, 75295, 58423, 30953, 12558, 4147, 1163, 289, 64, 11, 1, 1;
232769, 365600, 293902, 160823, 67259, 22878, 6574, 1647, 373, 76, 12, 1, 1; ...
		

Crossrefs

Cf. A101495, A026898, A089246 (first differences by column), A304357 (antidiagonal sums, empirically), A034856 (fourth diagonal).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Sum([0..n-k],j->Binomial(j+k,j)*(n-k-j)^j)))); # Muniru A Asiru, Mar 07 2019
  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=polcoeff(sum(m=0,n-k, x^m/(1-m*x +x*O(x^(n-k)))^(k+1)),n-k)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Mar 06 2013
    

Formula

T(n,0) = A026898(n-1).
T(n,k) = Sum_{j=0..n-k} binomial(j+k,j)*(n-k-j)^j. - Vladeta Jovovic, Sep 07 2006
G.f.: A(x,y) = Sum_{n>=0} Sum_{k>=0} x^(n+k)*y^k / (1 - n*x)^(k+1). - Paul D. Hanna, Mar 06 2013
From Mathew Englander, Feb 25 2021: (Start)
G.f. of row n: Sum_{i=0..n} (x+n-i)^i.
T(n,k) = Sum_{j=k..n} A089246(j,k).
Antidiagonal sums: Sum_{j = 0..n} Sum_{i = j..floor((n+j)/2)} binomial(i,j)*(n+j-2*i)^j. (End)

A304359 Antidiagonal sums of the second quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 2, 1, -10, 39, -58, -166, 1611, -6311, 10083, 54195, -565257, 2727568, -6102368, -26464605, 394614352, -2515452801, 8797315672, 11441288836, -458369484247, 4097437715969, -21769011878335, 36715605929957, 703213495381553, -10042075731879152
Offset: 0

Views

Author

Alois P. Heinz, May 11 2018

Keywords

Comments

Equivalently, antidiagonal sums of the fourth quadrant of array A(k,m).

Crossrefs

Programs

  • Maple
    F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]:
    a:= n-> add(F(-j, n-j), j=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    F:= proc(n, k) option remember;
          `if`(n<2, n, k*F(n-1, k)+F(n-2, k))
        end:
    a:= n-> add(F(j, j-n), j=0..n):
    seq(a(n), n=0..30);
    # third Maple program:
    a:= n-> add(combinat[fibonacci](j, j-n), j=0..n):
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Fibonacci[j, j - n], {j, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)

Formula

a(n) = Sum_{j=0..n} F_j(j-n).
Showing 1-4 of 4 results.