cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115066 Chebyshev polynomial of the first kind T(n,x), evaluated at x=n.

Original entry on oeis.org

1, 1, 7, 99, 1921, 47525, 1431431, 50843527, 2081028097, 96450076809, 4993116004999, 285573847759211, 17882714781360001, 1216895030905226413, 89415396036432386311, 7055673735003659189775, 595077930963909484707841, 53421565080956452077519377
Offset: 0

Views

Author

Roger L. Bagula, Mar 01 2006

Keywords

Examples

			a(3) = 99 because T[3, x] = 4x^3 - 3x and T[3, 3] = 4*3^3 - 3*3 = 99.
		

References

  • G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1966, p. 35.
  • M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Dover, New York, 1985, page 18.
  • G. Szego, Orthogonal polynomials, Amer. Math. Soc., Providence, 1939, p. 29.

Crossrefs

Programs

  • Maple
    with(orthopoly): seq(T(n,n),n=0..17);
  • Mathematica
    Table[ChebyshevT[n, n], {n, 0, 17}] (* Arkadiusz Wesolowski, Nov 17 2012 *)
  • PARI
    A115066(n)=cos(n*acos(n))  \\ M. F. Hasler, Apr 06 2012
    
  • PARI
    a(n) = polchebyshev(n, 1, n); \\ Seiichi Manyama, Dec 28 2018
    
  • PARI
    a(n) = if(n==0, 1, n*sum(k=0, n, (2*n-2)^k*binomial(n+k, 2*k)/(n+k))); \\ Seiichi Manyama, Mar 05 2021

Formula

a(n) = cos(n*arccos(n)).
a(n) ~ 2^(n-1) * n^n. - Vaclav Kotesovec, Jan 19 2019
a(n) = (A323118(n) - A107995(n-2))/2 for n > 1. - Seiichi Manyama, Mar 05 2021
a(n) = n * Sum_{k=0..n} (2*n-2)^k * binomial(n+k,2*k)/(n+k) for n > 0. - Seiichi Manyama, Mar 05 2021
It appears that a(2*n+1) == 0 (mod (2*n+1)^2) and 2*a(4*n+2) == -2 (mod (4*n+2)^4), while for k > 1, 2*a(2^k*(2*n+1)) == 2 (mod (2^k*(2*n+1))^4). - Peter Bala, Feb 01 2022

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A342206 a(n) = T(n,n+2) where T(n,x) is a Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 3, 31, 485, 10081, 262087, 8193151, 299537289, 12545596801, 592479412811, 31154649926687, 1805486216133613, 114342125644787041, 7857107443850071695, 582268591681887560191, 46292552162781456490001, 3930448770533424343942657
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, n + 2], {n, 0, 16}] (* Amiram Eldar, Mar 05 2021 *)
  • PARI
    a(n) = polchebyshev(n, 1, n+2);
    
  • PARI
    a(n) = round(cos(n*acos(n+2)));
    
  • PARI
    a(n) = if(n==0, 1, n*sum(k=0, n, (2*n+2)^k*binomial(n+k, 2*k)/(n+k)));

Formula

a(n) = cos(n*arccos(n+2)).
a(n) = n * Sum_{k=0..n} (2*n+2)^k * binomial(n+k,2*k)/(n+k) for n > 0.
a(n) ~ exp(2) * 2^(n-1) * n^n. - Vaclav Kotesovec, Mar 12 2024

A342207 a(n) = U(n,n+1) where U(n,x) is a Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 4, 35, 496, 9701, 241956, 7338631, 262184896, 10783446409, 501827040100, 26069206375211, 1495427735314800, 93885489910449901, 6403169506981578436, 471427031236487965199, 37265225545829174607616, 3147895910861898495432209
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, n + 1], {n, 0, 16}] (* Amiram Eldar, Mar 05 2021 *)
  • PARI
    a(n) = polchebyshev(n, 2, n+1);
    
  • PARI
    a(n) = sum(k=0, n, (2*n)^(n-k)*binomial(2*n+1-k, k));
    
  • PARI
    a(n) = sum(k=0, n, (2*n)^k*binomial(n+1+k, 2*k+1));

Formula

a(n) = Sum_{k=0..n} (2*n)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (2*n)^k * binomial(n+1+k,2*k+1).
a(n) ~ exp(1) * 2^n * n^n. - Vaclav Kotesovec, Mar 05 2021
Showing 1-3 of 3 results.