A349327 Primes p such that 2*p^2 is a term of A179993.
2, 3, 7, 13, 43, 127, 211, 293, 743, 757, 797, 811, 1429, 1597, 1721, 2087, 2113, 2239, 2269, 2297, 2381, 2423, 2647, 3079, 3121, 3221, 3863, 4229, 4271, 4957, 5209, 5333, 5923, 6299, 6691, 7127, 7237, 7349, 7757, 7853, 8329, 8513, 8539, 8807, 9127, 9311, 9631, 9661
Offset: 1
Keywords
Examples
2 is a term since 2*2^2 = 8 = 1*8 = 2*4 is a term of A179993: 8 - 1 = 7 and 4 - 2 = 2 are both primes. 3 is a term since 2*3^2 = 18 = 1*18 = 2*9 = 3*6 is a term of A179993: 18 - 1 = 17, 9 - 2 = 7 and 6 - 3 = 3 are all primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[n_] := AllTrue[{n, n^2 - 2, 2*n^2 - 1}, PrimeQ]; Select[Range[10000], q]
-
Python
from itertools import islice from sympy import isprime, nextprime def A349327(): # generator of terms n = 2 while True: if isprime(n**2-2) and isprime (2*n**2-1): yield n n = nextprime(n) A349327_list = list(islice(A349327(),20)) # Chai Wah Wu, Nov 15 2021
Comments