cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179995 Generating function A(5,t)(1+t+t^2)/(1-t)^6, where A(5,t) is an Eulerian polynomial.

Original entry on oeis.org

1, 33, 276, 1299, 4392, 11925, 27708, 57351, 108624, 191817, 320100, 509883, 781176, 1157949, 1668492, 2345775, 3227808, 4358001, 5785524, 7565667, 9760200, 12437733, 15674076, 19552599, 24164592, 29609625, 35995908
Offset: 0

Views

Author

Peter Luschny, Aug 05 2010

Keywords

Comments

The Eulerian polynomials A(n,t) are here defined in accordance with the Digital Library of Mathematical Functions, Table 26.14.1.
Sums of 3 consecutive fifth powers: a(n) = (n-1)^5+n^5+(n+1)^5. - Bruno Berselli, Jun 24 2013

Crossrefs

Cf. A158799, A008486, A005918, A027602, A160827 which have generating functions of type A(n, t)(1+t+t^2)/(1-t)^(n+1).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+27*x+93*x^2+118*x^3+93*x^4+27*x^5+x^6)/(1-x)^6)); // Bruno Berselli, Jun 24 2013
  • Maple
    gfA179995 := proc(t) local i;
    add([1,27,93,118,93,27,1][i+1]*t^i,i=0..5)/(1-t)^6 end:
    seq(coeff(series(gfA179995(t),t,24),t,j),j=0..16);
  • Mathematica
    Join[{1}, Table[n (3 n^4 + 20 n^2 + 10), {n, 30}]] (* Bruno Berselli, Jun 24 2013 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 33, 276, 1299, 4392, 11925, 27708}, 30] (* Harvey P. Dale, Apr 10 2015 *)

Formula

From Bruno Berselli, Jun 24 2013: (Start)
G.f.: (1 + 27*x + 93*x^2 + 118*x^3 + 93*x^4 + 27*x^5 + x^6) / (1 - x)^6.
a(n) = n*(3*n^4 + 20*n^2 + 10) for n>0, a(0)=1. (End)
a(0)=1, a(1)=33, a(2)=276, a(3)=1299, a(4)=4392, a(5)=11925, a(6)=27708; for n>6, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Apr 10 2015