A179995 Generating function A(5,t)(1+t+t^2)/(1-t)^6, where A(5,t) is an Eulerian polynomial.
1, 33, 276, 1299, 4392, 11925, 27708, 57351, 108624, 191817, 320100, 509883, 781176, 1157949, 1668492, 2345775, 3227808, 4358001, 5785524, 7565667, 9760200, 12437733, 15674076, 19552599, 24164592, 29609625, 35995908
Offset: 0
Links
- OEIS Wiki, Eulerian polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+27*x+93*x^2+118*x^3+93*x^4+27*x^5+x^6)/(1-x)^6)); // Bruno Berselli, Jun 24 2013 -
Maple
gfA179995 := proc(t) local i; add([1,27,93,118,93,27,1][i+1]*t^i,i=0..5)/(1-t)^6 end: seq(coeff(series(gfA179995(t),t,24),t,j),j=0..16);
-
Mathematica
Join[{1}, Table[n (3 n^4 + 20 n^2 + 10), {n, 30}]] (* Bruno Berselli, Jun 24 2013 *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 33, 276, 1299, 4392, 11925, 27708}, 30] (* Harvey P. Dale, Apr 10 2015 *)
Formula
From Bruno Berselli, Jun 24 2013: (Start)
G.f.: (1 + 27*x + 93*x^2 + 118*x^3 + 93*x^4 + 27*x^5 + x^6) / (1 - x)^6.
a(n) = n*(3*n^4 + 20*n^2 + 10) for n>0, a(0)=1. (End)
a(0)=1, a(1)=33, a(2)=276, a(3)=1299, a(4)=4392, a(5)=11925, a(6)=27708; for n>6, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Apr 10 2015
Comments