cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180002 Place a(n) red and b(n) blue balls in an urn; draw 5 balls without replacement; Probability(5 red balls) = Probability(3 red and 2 blue balls).

Original entry on oeis.org

4, 8, 24, 43, 179, 783, 1504, 6668, 29604, 56983, 253079, 1124043, 2163724, 9610208, 42683904, 82164403, 364934699, 1620864183, 3120083464, 13857908228, 61550154924, 118481007103, 526235577839, 2337285022803, 4499158186324, 19983094049528
Offset: 1

Views

Author

Paul Weisenhorn, Aug 05 2010

Keywords

Comments

This is equivalent to the Pell equation A(n)^2 - 10*B(n)^2 = -9 with a(n) = (A(n)+7)/2, b(n) = (B(n)+1)/2, and the 3 fundamental solutions (1,1), (9,3), (41,13), and the solution (19,6) for the unit form.

Examples

			For n=3: a(3)=24 and b(3)=7 since binomial(24,5) = binomial(24,3)*binomial(7,2) = 42504.
		

Crossrefs

Cf. A180003 (b(n)).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(4+4*x+ 16*x^2-133*x^3-16*x^4-4*x^5+3*x^6)/((1-x)*(1-38*x^3+x^6)) )); // G. C. Greubel, Mar 20 2019
    
  • Mathematica
    Rest[CoefficientList[Series[x*(4+4*x+16*x^2-133*x^3-16*x^4-4*x^5 +3*x^6 )/((1-x)*(1-38*x^3+x^6)), {x,0,30}], x]] (* G. C. Greubel, Mar 20 2019 *)
    LinearRecurrence[{1,0,38,-38,0,-1,1},{4,8,24,43,179,783,1504},30] (* Harvey P. Dale, May 04 2024 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(4+4*x+16*x^2-133*x^3-16*x^4-4*x^5+3*x^6) /((1-x)*(1-38*x^3+x^6))) \\ G. C. Greubel, Mar 20 2019
    
  • Sage
    a=(x*(4+4*x+16*x^2-133*x^3-16*x^4-4*x^5+3*x^6)/((1-x)*(1-38*x^3 +x^6))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 20 2019

Formula

G.f.: x*(4 +4*x +16*x^2 -133*x^3 -16*x^4 -4*x^5 +3*x^6)/((1-x)*(1 -38*x^3 +x^6)).
a(n+9) = 39*a(n+6) - 39*a(n+3) + a(n).
Let r = sqrt(10) then:
a(3*n+1) = (14 + (1+r)*(19+6*r)^n + (1-r)*(19-6*r)^n)/4.
a(3*n+2) = (14 + 3*(3+r)*(19+6*r)^n + 3*(3-r)*(19-6*r)^n)/4.
a(3*n+3) = (14 + (41+13*r)*(19+6*r)^n + (41-13*r)*(19-6*r)^n)/4.
a(n) = a(n-1) + 38*a(n-3) - 38*a(n-4) - a(n-6) + a(n-7). - G. C. Greubel, Mar 20 2019