cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180003 Place a(n) blue and b(n) (A180002) red balls in an urn, draw 5 balls without replacement; Probability(5 red balls) = Probability(3 red and 2 blue balls).

Original entry on oeis.org

1, 2, 7, 13, 56, 247, 475, 2108, 9361, 18019, 80030, 355453, 684229, 3039014, 13497835, 25982665, 115402484, 512562259, 986657023, 4382255360, 19463867989, 37466984191, 166410301178, 739114421305, 1422758742217, 6319209189386
Offset: 1

Views

Author

Paul Weisenhorn, Aug 05 2010

Keywords

Comments

This is equivalent to the Pell equation B(n)^2 - 10*A(n)^2 = -9 with
a(n) = (A(n)+1)/2, b(n) = (B(n)+7)/2, and the 3 fundamental solutions
(1,1), (9,3), (41,13), and the solution (19,6) for the unit form.

Examples

			For n=3: a(3)=7, b(3)=24, binomial(7,2)*binomial(24,3) = binomial(24,5) = 42504.
		

Crossrefs

Cf. A180002 (b(n)).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+x+5*x^2-32*x^3+5*x^4+x^5+x^6)/((1-x)*(1-38*x^3+x^6)) )); // G. C. Greubel, Mar 21 2019
    
  • Mathematica
    Rest[CoefficientList[Series[x*(1+x+5*x^2-32*x^3+5*x^4+x^5+x^6)/((1-x)*( 1-38*x^3+x^6)), {x,0,30}], x]] (* G. C. Greubel, Mar 20 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1+x+5*x^2-32*x^3+5*x^4+x^5+x^6)/((1-x) *(1-38*x^3+x^6))) \\ G. C. Greubel, Mar 21 2019
    
  • Sage
    a=(x*(1+x+5*x^2-32*x^3+5*x^4+x^5+x^6)/((1-x)*(1-38*x^3+x^6)) ).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 21 2019

Formula

G.f.: x*(1 +x +5*x^2 -32*x^3 +5*x^4 +x^5 +x^6)/((1-x)*(1-38*x^3+x^6)).
a(n+9) = 39*a(n+6) - 39*a(n+3) + a(n).
Let r = sqrt(10), then:
a(3*n+1) = (20 + (10+r)*(19+6*r)^n + (10-r)*(19-6*r)^n)/40.
a(3*n+2) = (20 + (30+9*r)*(19+6*r)^n + (30-9*r)*(19-6*r)^n)/40.
a(3*n+3) = (20 + (130+41*r)*(19+6*r)^n + (130-41*r)*(19-6*r)^n)/40.
a(n) = a(n-1) + 38*a(n-3) - 38*a(n-4) - a(n-6) + a(n-7). - G. C. Greubel, Mar 21 2019

Extensions

Edited by G. C. Greubel, Mar 21 2019