cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341893 Indices of triangular numbers that are one-tenth of other triangular numbers.

Original entry on oeis.org

0, 1, 6, 12, 55, 246, 474, 2107, 9360, 18018, 80029, 355452, 684228, 3039013, 13497834, 25982664, 115402483, 512562258, 986657022, 4382255359, 19463867988, 37466984190, 166410301177, 739114421304, 1422758742216, 6319209189385, 28066884141582, 54027365220036, 239963538895471, 1065802482958830, 2051617119619170
Offset: 1

Views

Author

Vladimir Pletser, Feb 23 2021

Keywords

Comments

The indices of triangular numbers that are one-tenth of other triangular numbers [t of T(t) such that T(t)=T(u)/10].
First member of the Diophantine pair (t, u) that satisfies 10*(t^2 + t) = u^2 + u; a(n) = t.
The T(t)'s are in A068085 and the u's are in A341895.
Also, nonnegative t such that 40*t^2 + 40*t + 1 is a square.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(4) = 12 is a term because its triangular number, (12*13) / 2 = 78 is one-tenth of 780, the triangular number of 39.
a(4) = 38 a(1) - a(-2) +18 = 0 - 6 +18 = 12 ;
a(5) = 38 a(2) - a(-1) + 18 = 38*1 - 1 +18 = 55.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-3) = 6, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 6, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ;
  • Mathematica
    Rest@ CoefficientList[Series[(x^2*(1 + 5*x + 6*x^2 + 5*x^3 + x^4))/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 31}], x] (* Michael De Vlieger, May 19 2022 *)

Formula

a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A068085(n).
a(n) = 38 a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
G.f.: x^2*(1 + 4*x+x^2)*(1+x+x^2)/ ((1-x)*(1-38*x^3+x^6)). - Stefano Spezia, Feb 24 2021
a(n) = A180003(n) - 1. - Hugo Pfoertner, Feb 28 2021

A180002 Place a(n) red and b(n) blue balls in an urn; draw 5 balls without replacement; Probability(5 red balls) = Probability(3 red and 2 blue balls).

Original entry on oeis.org

4, 8, 24, 43, 179, 783, 1504, 6668, 29604, 56983, 253079, 1124043, 2163724, 9610208, 42683904, 82164403, 364934699, 1620864183, 3120083464, 13857908228, 61550154924, 118481007103, 526235577839, 2337285022803, 4499158186324, 19983094049528
Offset: 1

Views

Author

Paul Weisenhorn, Aug 05 2010

Keywords

Comments

This is equivalent to the Pell equation A(n)^2 - 10*B(n)^2 = -9 with a(n) = (A(n)+7)/2, b(n) = (B(n)+1)/2, and the 3 fundamental solutions (1,1), (9,3), (41,13), and the solution (19,6) for the unit form.

Examples

			For n=3: a(3)=24 and b(3)=7 since binomial(24,5) = binomial(24,3)*binomial(7,2) = 42504.
		

Crossrefs

Cf. A180003 (b(n)).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(4+4*x+ 16*x^2-133*x^3-16*x^4-4*x^5+3*x^6)/((1-x)*(1-38*x^3+x^6)) )); // G. C. Greubel, Mar 20 2019
    
  • Mathematica
    Rest[CoefficientList[Series[x*(4+4*x+16*x^2-133*x^3-16*x^4-4*x^5 +3*x^6 )/((1-x)*(1-38*x^3+x^6)), {x,0,30}], x]] (* G. C. Greubel, Mar 20 2019 *)
    LinearRecurrence[{1,0,38,-38,0,-1,1},{4,8,24,43,179,783,1504},30] (* Harvey P. Dale, May 04 2024 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(4+4*x+16*x^2-133*x^3-16*x^4-4*x^5+3*x^6) /((1-x)*(1-38*x^3+x^6))) \\ G. C. Greubel, Mar 20 2019
    
  • Sage
    a=(x*(4+4*x+16*x^2-133*x^3-16*x^4-4*x^5+3*x^6)/((1-x)*(1-38*x^3 +x^6))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 20 2019

Formula

G.f.: x*(4 +4*x +16*x^2 -133*x^3 -16*x^4 -4*x^5 +3*x^6)/((1-x)*(1 -38*x^3 +x^6)).
a(n+9) = 39*a(n+6) - 39*a(n+3) + a(n).
Let r = sqrt(10) then:
a(3*n+1) = (14 + (1+r)*(19+6*r)^n + (1-r)*(19-6*r)^n)/4.
a(3*n+2) = (14 + 3*(3+r)*(19+6*r)^n + 3*(3-r)*(19-6*r)^n)/4.
a(3*n+3) = (14 + (41+13*r)*(19+6*r)^n + (41-13*r)*(19-6*r)^n)/4.
a(n) = a(n-1) + 38*a(n-3) - 38*a(n-4) - a(n-6) + a(n-7). - G. C. Greubel, Mar 20 2019
Showing 1-2 of 2 results.