cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A332770 a(n) is the number of ways to write A180045(n) as (x*y+1)*(x*z+1) with x > y > z > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Rémy Sigrist, Feb 23 2020

Keywords

Examples

			The first terms, alongside A180045(n), are:
  n   a(n)  A180045(n)
  --  ----  ---------------------------------------
   1     1   28 = (3*2+1)*(3*1+1)
   2     1   45 = (4*2+1)*(4*1+1)
   3     1   65 = (4*3+1)*(4*1+1)
   4     1   66 = (5*2+1)*(5*1+1)
   5     1   91 = (6*2+1)*(6*1+1)
   6     1   96 = (5*3+1)*(5*1+1)
   7     1  117 = (4*3+1)*(4*2+1)
   8     1  120 = (7*2+1)*(7*1+1)
   9     1  126 = (5*4+1)*(5*1+1)
  10     1  133 = (6*3+1)*(6*1+1)
  11     1  153 = (8*2+1)*(8*1+1)
  12     1  175 = (6*4+1)*(6*1+1)
  13     2  176 = (5*3+1)*(5*2+1) = (7*3+1)*(7*1+1)
		

Crossrefs

Cf. A180045.

Programs

  • C
    See Links section.
  • Maple
    N:= 20000: # for a(n) where A180045(n) <= N
    V:= Vector(N):
    for x from 3 while (2*x+1)*(x+1) <= N do
      for y from 2 to x-1 while (x*y+1)*(x+1) <= N do
        for z from 1 to y-1 do
          v:= (x*y+1)*(x*z+1);
          if v > N then break fi;
          V[v]:= V[v]+1;
    od od od:
    subs(0=NULL,convert(V,list)); # Robert Israel, Jun 10 2021

A332768 a(n) is the greatest prime factor of A180045(n).

Original entry on oeis.org

7, 5, 13, 11, 13, 3, 13, 5, 7, 19, 17, 7, 11, 19, 31, 5, 11, 29, 19, 23, 7, 3, 11, 13, 11, 7, 31, 43, 41, 37, 7, 31, 17, 17, 29, 7, 41, 23, 19, 37, 31, 19, 19, 5, 11, 7, 17, 31, 7, 13, 29, 5, 43, 31, 61, 7, 41, 37, 73, 23, 53, 31, 13, 71, 23, 11, 61, 67, 11
Offset: 1

Views

Author

Rémy Sigrist, Feb 23 2020

Keywords

Comments

Corvaja and Zannier showed that a(n) tends to infinity as n tends to infinity.

Examples

			The first terms, alongside A180045(n), are:
  n   a(n)  A180045(n)
  --  ----  --------------
   1     7   28 =  7 * 2^2
   2     5   45 =  5 * 3^2
   3    13   65 = 13 * 5
   4    11   66 = 11 * 3 * 2
   5    13   91 = 13 * 7
   6     3   96 =  3 * 2^5
   7    13  117 = 13 * 3^2
   8     5  120 =  5 * 3 * 2^3
   9     7  126 =  7 * 3^2 * 2
  10    19  133 = 19 * 7
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = A006530(A180045(n)).

A260234 Largest prime factor of the n-th hexagonal number (A000384).

Original entry on oeis.org

3, 5, 7, 5, 11, 13, 5, 17, 19, 11, 23, 13, 7, 29, 31, 17, 7, 37, 13, 41, 43, 23, 47, 7, 17, 53, 11, 29, 59, 61, 7, 13, 67, 23, 71, 73, 19, 13, 79, 41, 83, 43, 29, 89, 23, 47, 19, 97, 11, 101, 103, 53, 107, 109, 37, 113, 29, 59, 17, 61, 41, 7, 127, 43, 131
Offset: 2

Views

Author

Colin Barker, Jul 20 2015

Keywords

Comments

As A000384(n+1) = (n*2+1)*(n*1+1), A000384(n) belongs to A180045 for n > 3, and a(n) tends to infinity as n tends to infinity. - Rémy Sigrist, Feb 23 2020

Examples

			a(3) = 5 because A000384(3) = 15 = 3 * 5.
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@PolygonalNumber[6,Range[2,70]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 10 2018 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    lpf(m) = vecmax(factorint(m)[, 1]) \\ Largest prime factor
    a(n) = lpf(pg(6, n))

Formula

a(n) = A006530(A000384(n)).

A320883 3-smooth numbers of the form (ab+1)(ac+1), a > b > c > 0.

Original entry on oeis.org

96, 288, 3888, 4608, 31104, 69984, 2654208, 2985984, 4478976, 1088391168, 1528823808, 440301256704
Offset: 1

Views

Author

M. F. Hasler, Nov 19 2018

Keywords

Comments

Subsequence of A320884 = 5-smooth terms of A180045, finite according to Corvaja & Zannier.
Can someone prove that a(12) = 440301256704 = (2359*889 + 1)(2359*89 + 1) = 2^26 * 3^8 is the last term?

Crossrefs

Cf. A180045 = {(ab+1)(ac+1); a > b > c > 0}, A320884 (5-smooth terms of A180045), A003586 (3-smooth numbers).

Programs

  • Mathematica
    (* This is only a recomputation of the existing sequence. *)
    (* Max exponents: *) jmax = 26; kmax = 12;
    r[j_, k_] := Reduce[a > b > c > 0 && (a b + 1)(a c + 1) == 2^j*3^k , {a, b, c}, Integers];
    Reap[Do[rr = r[j, k]; If[rr =!= False, Print[{j, k, 2^j*3^k}]; Sow[2^j*3^k]], {j, 1, jmax}, {k, 1, kmax}]][[2, 1]] // Union (* Jean-François Alcover, Dec 05 2018 *)
  • PARI
    A320883(LIM=35,S=[])={for(m=1,LIM, for(k=0,m, is_A180045(3^k<<(m-k))&& S=setunion(S,[3^k<<(m-k)])));S} \\ Gives all terms up to 2^LIM and possibly some larger terms up to 3^LIM.
    is_A320883(n)={vecmax(factor(n,3)[,1])<4 && is_A180045(n)}

Formula

Intersection of A180045 = {(ab+1)(ac+1); a > b > c > 0} and A003586 (3-smooth numbers).

A320884 5-smooth numbers of the form (ab+1)(ac+1), a > b > c > 0.

Original entry on oeis.org

45, 96, 120, 225, 288, 540, 640, 1080, 1200, 1920, 2160, 3888, 4000, 4500, 4608, 5760, 6480, 7200, 8640, 9600, 10935, 16875, 18225, 25000, 25600, 27000, 28800, 30720, 31104, 38400, 46080, 48600, 69984, 75000, 81000, 91125, 97200, 102400, 112500, 115200, 164025, 184320
Offset: 1

Views

Author

M. F. Hasler, Nov 19 2018

Keywords

Comments

Corvaja & Zannier show that there are only finitely many p-smooth terms in A180045, for any prime p. This sequences lists these terms for p = 5, and is therefore finite.
Can someone prove that a(163) = 3327916660110655488000000000 = (16775191*16038089 + 1)(16775191*737369 + 1) = 2^42 * 3^18 * 5^9 is the last term? - M. F. Hasler, Nov 19 2018
If a(164) exists it's larger than 10^60. - David A. Corneth, Nov 20 2018

Crossrefs

Cf. A180045 (numbers (ab+1)(ac+1), a>b>c), A320883 (subsequence of 3-smooth terms), A051037 (5-smooth numbers).

Programs

  • Mathematica
    (* This is only a recomputation of the existing data section. *)
    jmax = 12; kmax = 8; lmax = 5; max = 200000;
    r[j_, k_, l_] := r[j, k, l] = If[2^j*3^k*5^l > max, Return[False], Reduce[a > b > c > 0 && (a b + 1)(a c + 1) == 2^j*3^k*5^l, {a, b, c}, Integers]];
    rea = Reap[Do[rr = r[j, k, l]; If[rr =!= False, res = {j, k, l, 2^j*3^k*5^l}; Print[res]; Sow[res]], {j, 0, jmax}, {k, 0, kmax}, {l, 0, lmax}]][[2, 1]] //Union;
    Print["min = ", Min /@ Transpose[rea], " max = ", Max /@ Transpose[rea]];
    Sort[rea[[All, 4]]] (* Jean-François Alcover, Dec 05 2018 *)
  • PARI
    is_A320884(n)={vecmax(factor(n,5)[,1])<6 && is_A180045(n)}
    A320884=select( is_A180045, A051037_list(1e30))

Formula

Intersection of A051037 and A180045.

A320885 7-smooth but not 5-smooth numbers of the form (ab+1)(ac+1), a > b > c > 0.

Original entry on oeis.org

28, 126, 175, 280, 336, 378, 441, 560, 630, 672, 1225, 1470, 1680, 1701, 1792, 2016, 2520, 2835, 3136, 3969, 4200, 5250, 5600, 6860, 7840, 7875, 8400, 8960, 9072, 9408, 11025, 11340, 12096, 13125, 15120, 17640, 19845, 20160, 21000, 23520, 24696, 27440, 30625, 32928, 35000
Offset: 1

Views

Author

M. F. Hasler, Nov 21 2018

Keywords

Comments

Corvaja & Zannier show that there are only finitely many p-smooth terms in A180045, for any prime p. This sequences lists these terms for p = 7 without those for p = 5 (A320884), and is therefore finite.

Crossrefs

Cf. A080194 (greatest prime factor = 7).
Cf. A180045 (numbers (ab+1)(ac+1), a>b>c>0), A320883 (subsequence of 3-smooth terms), A320884 (subsequence of 5-smooth terms).

Programs

  • Mathematica
    Reap[For[k = 7, k <= 35000, k = k+7, If[FactorInteger[k][[-1, 1]] == 7, If[ Reduce[k == (a b + 1)(a c + 1) && a > b > c > 0, {a, b, c}, Integers] =!= False, Print[k]; Sow[k]]]]][[2, 1]] (* Jean-François Alcover, Dec 07 2018 *)
  • PARI
    is_A320885(n)={vecmax(factor(n,7)[,1])==7 && is_A180045(n)}
    A320885=select( is_A180045, A080194_list(1e20)) \\ Only initial terms, not the complete sequence. For more efficiency, use is_A180045 or a dedicated implementation inside the nested loops in A080194_list().

Formula

Intersection of A080194 (gpf(n) = 7) and A180045 ((ab+1)(ac+1)).

A332764 7-smooth numbers of the form (ab+1)*(ac+1), a > b > c > 0.

Original entry on oeis.org

28, 45, 96, 120, 126, 175, 225, 280, 288, 336, 378, 441, 540, 560, 630, 640, 672, 1080, 1200, 1225, 1470, 1680, 1701, 1792, 1920, 2016, 2160, 2520, 2835, 3136, 3888, 3969, 4000, 4200, 4500, 4608, 5250, 5600, 5760, 6480, 6860, 7200, 7840, 7875, 8400, 8640, 8960
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 22 2020

Keywords

Comments

Sequence is finite (see comments at A320884).

Crossrefs

Cf. A180045 (numbers (ab+1)(ac+1), a > b > c > 0), A320883 (subsequence of 3-smooth terms), A320884 (subsequence of 5-smooth terms), A002473 (7-smooth numbers).

Programs

  • Mathematica
    Block[{nn = 9000, nm, m}, nm = Ceiling[(Sqrt[8 nn + 1] - 3)/4]; Union@ Reap[Do[If[a > b > c > 0, Set[m, (a b + 1) (a c + 1)]; If[And[m <= nn, FactorInteger[m][[-1, 1]] <= 7 ], Sow[m]]], {a, nm}, {b, a - 1}, {c, b - 1}]][[2, 1]]] (* Michael De Vlieger, Feb 25 2020, after Jean-François Alcover at A180045 *)

Formula

Intersection of A002473 and A180045.

A345215 a(n) is the least positive number k that can be written in exactly k ways as (x*y+1)*(x*z+1) with x > y > z > 1.

Original entry on oeis.org

1, 28, 176, 561, 2701, 7381, 29161, 51681, 115921, 390241, 260281, 924001, 1334161, 1413721, 1038961, 3178981, 8826301, 3000025, 16597441, 33882241, 12708361, 22589281, 31375081, 63095761, 90336961
Offset: 0

Views

Author

Robert Israel, Jun 10 2021

Keywords

Comments

For n > 1, a(n) = A180045(k) where A332770(k) = n is the first appearance of n in A332770.

Examples

			a(3) = 561 since 176 = (8*4+1)*(8*2+1) = (10*5+1)*(10*1+1) = (16*2+1)*(16*1+1) is the first number that can be obtained in exactly 3 ways.
		

Crossrefs

Programs

  • Maple
    N:= 10^8:
    V:= Vector(N,datatype=integer[4]):
    for x from 3 while (2*x+1)*(x+1) <= N do
      for y from 2 to x-1 while (x*y+1)*(x+1) <= N do
        for z from 1 to y-1 do
          v:= (x*y+1)*(x*z+1);
          if v > N then break fi;
          V[v]:= V[v]+1;
    od od od:
    R:= Array(0..26):
    for j from 1 to N do
      v:= V[j]; if R[v] = 0 then R[v]:= j fi
    od:
    convert(R[0..24],list);
Showing 1-8 of 8 results.